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Interconnect Joule Heating
under Transient Currents
using the Transmission Line
Matrix Method
The quality and reliability of interconnects in microelectronics is a major challenge con-
sidering the increasing level of integration and high current densities. This work studied
the problem of transient Joule heating in interconnects in a two-dimensional (2D) inho-
mogeneous domain using the transmission line matrix (TLM) method. Computational effi-
ciency of the TLM method and its ability to accept non-uniform 2D and 3D mesh and
variable time step makes it a good candidate for multi-scale analysis of Joule heating in
on-chip interconnects. The TLM method was implemented with link-resistor (LR) and
link-line (LL) formulations, and the results were compared with a finite element (FE)
model. The overall behavior of the TLM models were in good agreement with the FE
model while, near the heat source, the transient TLM solutions developed slower than the
FE solution. The steady-state results of the TLM and FE models were identical. The two
TLM formulations yielded slightly different transient results, with the LL result growing
slower, particularly at the source boundary and becoming unstable at short time-steps. It
was concluded that the LR formulation is more accurate for transient thermal analysis.
[DOI: 10.1115/1.4006137]
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Introduction

A major concern in the design of microprocessors is the quality
and reliability of on-chip interconnects [1]. These interconnects
are usually Al-Cu- or Cu-based submicron lines deposited on an
insulation layer. Because of the increasing level of integration in
microprocessors, interconnects are subjected to high current den-
sity and; hence, to high temperature increase under operating con-
ditions. Moreover, because of the large thermal expansion
mismatch between the metallic line and the underlying dielectric
layer, high thermomechanical stresses develop. Several experi-
mental and computational studies suggest that these factors are
primarily responsible for morphological changes in the lines that
result in open-circuit and short-circuit failures in interconnects
and as a consequence, limiting the quality and reliability of the
entire circuit. As an example, the basic elements of thermome-
chanical fatigue behavior of microelectronic interconnect struc-
tures, such as lines and vias, based on accelerated test results have
been studied and FE analysis has been developed [2].

Interconnect lines always contain a variety of pre-existing
defects such as voids and cracks [3]. Local hot spots, which origi-
nate from these defects, often have a major role in controlling the
micro-mechanisms of interconnect line failures. Such failure proc-
esses are governed by the kinetics of inhomogeneous diffusions
and/or reactions. For example, the effect of electromigration, as
well as the variation of diffusion rates, will accelerate void growth
and translation, and their accompanied stress buildups, leading to
a final failure of the interconnect line. The transient heat transfer
in the system greatly influences the morphology of failure and the
pattern of damage evolution, which depend strongly on the elec-
tric current loading rate.

The problem of steady state Joule heating in interconnects has
been studied using 2D analytical, finite difference (FD), and finite
element (FE) 2D and 3D models [4–6]. Multi-stack interconnect
architecture is characterized by wide range of length scales
(from 10�9 m to 10�2 m) and significant material inhomogeneity
(thermal conductivity variation from 0.1 W/mK to 400 W/mK).
Different metal levels are connected through vias that provide
electrical connections. To reduce the total simulation time, it is
often desirable to use an inhomogeneous mesh that is more refined
in the areas if there is large temperature gradient. In existing FD
and FE models, computational times are long even for a unit cell
(micro-models). Some authors have proposed compact FE models
to reduce the computational time, with the trade-off being reduced
resolution and accuracy especially at the interface between the
metal and dielectric [7,8]. It has been shown that using the method
of quad-tree mesh with the TLM method as well as algorithms for
optimizing the time stepping can reduces the execution time by
100 times [9].

Recent multicore chip architectures which incorporate dynamic
migration of computing loads point to the importance of Joule
heating under transient conditions. In the present study, we inves-
tigate transient heating effects using the Transmission Line Matrix
(TLM) Method [10,11]. The TLM formulation is based on a re-
sistance and capacitance network and allows for temperature-
dependent and inhomogeneous material parameters, non-uniform
mesh, and variable time-stepping. The conventional link-line (LL)
TLM network used for 1D diffusion problems often results in nu-
merical oscillations [12]. The link resistor (LR) method, with ca-
pacitance centered on the nodes, with resistors placed mid-way
between nodes, contrasts with the LL method, in which resistors
are placed at the nodes, with transmission lines linking adjacent
nodes, yielding reduced oscillations. Comparisons between vari-
ous LL and LR models indicate that, in general, 2D LR TLM
models consistently produce more accurate results [12]. It should
be noted that, once the domain is approximated by a TLM model,
the TLM solution is exact. The approximation of a TLM model is
in the analogy of the physical system (in this case, heat diffusion)
with an electrical circuit. In contrast, two approximations exist in
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the FE model: one approximation is in dividing the given geome-
try into elements, the other is in approximating the solution in an
element. It is important to note that nonlinear material properties,
dependent on time or temperature, can be implemented in the
TLM algorithm as described by several authors in the literature
(e.g., Refs. [10] and [11]).

Another advantage of the TLM method over FD and FE meth-
ods is greater stability. In particular, for transient thermal analysis,
this allows the time step to be increased as the simulation pro-
gresses towards steady state; hence reducing the computational
time significantly. Moreover, TLM has the possible use in multi-
scale simulations by incorporating rapid local zoom-in approaches
such as the quad-tree mesh [9–11].

TLM Background

The original TLM differential equation is a hyperbolic equa-
tion, which indicates that this method can also be used to simulate
the hyperbolic heat equation that is based on the Cattaneo equa-
tion. The Cattaneo equation has been proposed as a more general
form of Fourier’s law and many researchers believe that Catta-
neo’s equation extends the validation regime of Fourier’s law to
time scales shorter than the relaxation time of a material. Catta-
neo’s equation leads to a form of heat equation known as the
hyperbolic heat equation, which is a damped wave equation that
predicts heat will propagate in waves with a finite speed. How-
ever, because of the lack of convincing experimental evidence
and contradictions with the second law of thermodynamics, justifi-
cation for accepting Cattaneo’s equation has been questioned
[13]. Several phenomenological theories have been developed to
describe transient heat transfer processes in solids and micro-/
nano-structures. Applications of transient and ultra-fast heating
include laser processing, nanothermal fabrication, and the mea-
surement of thermophysical properties. In the literature, there
appears to be controversial experimental evidence on the exis-
tence of certain phenomena predicted by the hyperbolic heat con-
duction. Furthermore, there exists a large division regarding the
formulation and the interpretation of the theories of non-Fourier
conduction. Consequently, to avoid the issues associated with
hyperbolic heat conduction equation, the propagation term in Eq.
(1) is kept small and negligible (see below), such that the analo-
gous heat equation (Eq. (5)) can be approximated. As described in
the following section, this is verified with keeping the parameter
m much smaller than unity.

Formulation

An electrical impulse in a transmission line matrix can be for-
mulated using the Maxwell’s curl equation for propagation in a
lossy medium, also known as the Telegrapher’s Equation [14]:

r2V ¼ LdCd
@2V

@t2
þ RdCd

@V

@t
� Rd

Dx
I (1)

where, Ld, Cd, and Rd are the distributed electrical inductance, ca-
pacitance, and resistance per unit length in the transmission line,
respectively. V and I are the nodal voltage and current in the elec-
trical circuit.

Eq. (1) and transient heat conduction equation (Eq. (5)) have a
similar structure. In Eq. (1), voltage can be treated as temperature
(V : T) and a network of electrical circuit elements can simulate
the medium, which means that temperature propagates in the form
of a damped wave. This is only valid on the grounds that the space
and time discretizations are properly chosen (explained in this
section). Using this approach, the transient heat conduction equa-
tion can be solved explicitly. Some advantages of this method can
be found in Refs. [10,11]. Analytical solution of the transient heat
conduction equation for interconnects is complicated due to: (a)
non-continuum transport effects at sub 40 nm for copper, (b) tran-
sient heat transfer at short-time scales associated with device

operational frequencies, (c) the large variation in thermal proper-
ties of the material from metals to dielectrics, and (d) the non-
uniformity of heat generation at the base of devices [13]. TLM
based formulation is of great value in simulations involving
micro/nano-length and -time scales, variation in thermal proper-
ties and non-uniform power generation. The physical interpreta-
tion of the coefficients of Eq. (1) is related to the thermal
parameters as described in the following analogies:

RdCd �
1

a
¼ qCP

j
(2)

where a is the diffusion coefficient, and

LdCd �
1

v2
tw

(3)

where vtw is the speed of the temperature wave. By dividing Eq.
(3) by Eq. (2), it can be seen that the relaxation time of the tem-
perature wave, which is interpreted as the time of the collision of
the particles [13], can be written as

s � LdCd

RdCd
¼ Ld

Rd
(4)

By substituting the thermal equivalence of the parameters back
into the Eq. (1), the Telegrapher’s Equation can be reduced to the
transient heat conduction equation:

r jðTÞrTð Þ ¼ qCP
@T

@t
� gðx; y; z; tÞ (5)

where j(T) is the thermal conductivity as a function of tempera-
ture, Cp is the specific heat of the material, q is the material den-
sity, and g(x,y,z,t) represents the local instantaneous volumetric
heat generation.

Notably, the first term on the right-hand side of Eq. (1), the
propagation term, has no equivalent in the classical heat diffusion
equation (Eq. (5)), and is therefore an error term in transmission
line modeling of diffusion problems. The error term is negligible
when [15]

RdCd
@V

@t
>> LdCd

@2V

@t2
(6)

By defining the parameter m as

m ¼ LdCd
@2V

@t2

�
RdCd

@V

@t
(7)

The restriction in Eq. (6) can be restated as m� 1. The error
parameter m, for a 2D heat diffusion problem with diffusion coef-
ficient a, can be written as [15]

m ¼ a
Dt2

Dx2

@2V

@t2

�
@V

@t

� �
(8)

which shows that m is a function of both time step and spatial re-
solution. The parameter m is a measure of how accurately the Tel-
egrapher’s equation (Eq. (1)) models the diffusion equation. It is
not a measure of the accuracy of the numerical solution to the par-
ticular problem, which ultimately depends on the spatial resolu-
tion and time step, Dx and Dt. The parameter m allows
determination of an appropriate choice of Dt for the Dx being
employed.

Once Rd and Cd have been determined by the physical problem,
a requirement that the pulses travel from node to node in a time
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step Dt results in the complex transmission line impedance Z
being equal to Dt/(CdDx), where Dx is the local distance between
nodes. The requirement that the second term in Eq. (1) be negligi-
ble then becomes a condition that Dt must be sufficiently small
[9].

Methodology

The TLM approach is described here primarily following
[10,11]. The TLM method is built on the rules governing the
travel of potential pulses. In a 1D horizontal model (Fig. 1), the
incident pulse at an arbitrary node (x) travels along the transmis-
sion lines approaching the node from either left or right. This
pulse will then be scattered passing the node. It either gets
reflected back in the same line with the reflection coefficient q, or
gets transmitted with the transmission coefficient s. These coeffi-
cients are calculated based on the encountered resistance and im-
pedance on the transmission line. A voltage impulse entering a LL
node will travel along a transmission line during a time Dt/2. At
this point, it encounters a discontinuity, ZT¼ (RþRþZ). The
reflection coefficient q¼ (ZT – Z)/(ZTþZ) is then

q ¼ R

Rþ Z
(9)

Based on the fact that qþ s¼ 1, the transmission coefficient will
be

s ¼ Z

Rþ Z
(10)

The equivalent discretizations of the medium are analogous elec-
trical network methods shown in Figs. 1(a) and 1(c). If the impe-
dances are located at the interface between the nodes, it is called a
Link-line (LL) representation (Fig. 1(b)). On the other hand, if the
resistors are placed at the interface, it is called a Link-Resistor (LR)
representation, which is implemented in the present work and
shown in Fig. 1(d). To write the equation of transmission line based

on the electrical equivalent circuit, we focus on the three adjacent
nodes in the line (x), (xþ 1), and (x� 1) demonstrated in Fig. 2. At
the start of an iteration, six pulses share these three positions, which
are situated at the center of transmission lines. The interaction of
these waves is described below and in Fig. 2.

The incident pulses from left and right for node (x) at any time
step are a combination of the pulses that have been scattered at
the previous time step from the adjacent nodes and node (x) itself.
In other words, the pulse that is at (x� 1) traveling to the left is no
longer relevant to node (x) and is ignored. The same applies to the
one that is traveling to the right from (xþ 1). These two pulses are
shown with dotted line arrows. The other four pulses travel for
time Dt/2 before they are scattered at the resistors. They are
shown as dashed line arrows. They then become incident on (x)
from left and right, shown with solid line arrows. The formulation
will then be in the forms of:

(a) Incident pulse for node (x) at time step kþ 1:

kþ1
iVLðxÞ ¼ qs

kVLðxÞ þ ss
kVRðx� 1Þ

kþ1
iVRðxÞ ¼ qs

kVRðxÞ þ ss
kVLðxþ 1Þ

(11)

(b) Scattered pulse for node (x) at time step kþ 1. When an
incident pulse passes a node from one side to another, it
switches from incident to scattered:

s
kþ1VLðxÞ ¼i

kþ1VRðxÞ
s
kþ1VRðxÞ ¼i

kþ1VLðxÞ
(12)

(c) Instantaneous potential at node (x) at time step kþ 1 is
written as the summation of simultaneously arriving
pulses at the node:

kþ1V ¼i
kþ1VLðxÞ þi

kþ1VRðxÞ (13)

To complete the algorithm, Eqs. (11) – (13) are repeated for k
iterations, where kDt is the total time of simulation.

Two types of boundary conditions (BCs) were considered in this
work. As a heat pulse reaches an insulating boundary, it gets reflected
back into the physical domain. This is equivalent to an open-circuit
(q¼ 1) condition. This condition should be applied at the interface
between nodes. Hence, a pulse traveling from a node during time Dt/
2 faces the boundary and arrives back at the node at the end of the
time step. Assuming there is an insulating boundary on the right-hand
side of the 1D model, using Eq. (11), this BC can be formulated as:

i
kþ1VLðxÞ ¼ qs

kVLðxÞ þ ss
kVRðx� 1Þ (14)

i
kþ1VRðxÞ ¼ 1s

kVRðxÞ þ 0s
kVLðxþ 1Þ (15)

Eq. (15) can be simplified:

kþ1
iVRðxÞ ¼s

k VRðxÞ (16)

For a constant temperature boundary, it is the resistor – not the
transmission line – that touches the boundary. There are two

Fig. 1 Analogous electrical circuit for (a) link-line TLM (LL TLM)
method and (c) link-resistor TLM (LR TLM) method. Electrical cir-
cuit representation of a single node of resistance-impedance
network by (b) LL TLM and (d) LR TLM methods [11].

Fig. 2 Three adjacent nodes located at the center of transmission line and their
pulses. Solid line arrows 5 incident pulse. Dashed and dotted line arrows 5 scattered
pulse. Pulse notation for left superscript: s 5 scattered and i 5 incident. Pulse nota-
tion for left subscript: k 5 time step. Pulse notation for right subscript: pulse
approaching the node from left (L) and from right (R).
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separate considerations in this BC: (a) the input from the source
can now be placed at the boundary, and (b) the history of the pulse
that is scattered from node 1 subsequently approaches the bound-
ary. The source (VC) on the boundary sees a series connection of
resistor and impedance, so the standard potential divider formula
gives the signal injected into the line. The pulse scattered toward
the boundary sees a short circuit, so the total, which is incident
from the left at a new time step, is the sum of these contributions.
This can be formulated as

kþ1
iVLð1Þ ¼ VC

Z

Rþ Z

� �
þs

k VLð1Þ
R� Z

Rþ Z

� �
(17)

In the LL method, Eqs. (11), (12), and (13) are replaced by the fol-
lowing equations:

(a) At time k, two incident pulses travel along the transmis-
sion line and approach the center of the node (x) from
left and right. We can write Eq. (13) for time k:

kV ¼i
k VLðxÞ þi

k VRðxÞ (18)

(b) Scattered pulse (reflection and transmission) for node (x)
at time step k:

s
kVLðxÞ ¼ qi

kVLðxÞ þ si
kVRðxÞ

s
kVRðxÞ ¼ si

kVLðxÞ þ qi
kVRðxÞ

(19)

(c) Incident pulse for node (x) at time step kþ 1. Each scat-
tered pulse travels to the boundaries and becomes an
incident pulse at the adjacent nodes:

kþ1
iVLðxÞ ¼s

k VRðx� 1Þ
kþ!

iVRðxÞ ¼s
k VLðxþ 1Þ

(20)

The iterative implementation of Eqs. (18) - (20) forms the LL
algorithm. It is clear that the main difference between the LR and
LL methods is in the calculation of incident and scattered pulses
(i.e., Eqs. (11) and (19)). An insulating BC at the right end will be
the same as described in Eq. (16). The formulation of the
constant-temperature boundary, however, is different for LL and
LR models. In an LL model, the transmission line touches the
boundary. To keep a constant temperature VC at the left boundary,
a “fictitious” node outside the boundary is assumed together with
its corresponding source and transmission line. The temperature at
the surface is calculated from the summation of the pulse incident
on node 1 at each new time step, and the pulse scattered from
node 1 at the previous time step, which should stay constant:

kþ1
iVLð1Þ ¼ �1s

kVLð1Þ þ VC (21)

Since the right-hand side of Eq. (21) is known at the present
time step, the incident pulse approaching node (x) from the left
can be calculated.

2D TLM algorithms follow the general principles discussed in
Eqs. (11) to (21) for two perpendicular transmission lines. Follow-
ing Ref. [12], two TLM codes were developed for LR and LL for-
mulations and implemented in MATLAB for the following case
study. A finite difference expression was used in the derivation of
m for each node (n) at each time step (k). Following Ref. [15], the
mean values of the backward difference forms of the time deriva-
tives were employed to reduce numerical oscillations:

kmðnÞ ¼ a
2

Dt2

Dx2

½kVðnÞ þk�1 VðnÞ� � 2½k�2VðnÞ þk�3 VðnÞ� þ ½k�4VðnÞ þk�5 VðnÞ�
½kVðnÞ þk�1 VðnÞ� � ½k�2VðnÞ þk�3 VðnÞ�

(22)

To avoid storing several generations of nodal temperatures at all
the nodes, the values of m were calculated at two representative
nodes with higher temperatures, one in the interconnect and one
in the dielectric.

2D Case Study

A simple case study of interconnect temperature increase for
the structure seen in Fig. 3 was performed to evaluate the TLM
modeling approach. Simulations of this configuration using FE
were used as a basis for the evaluation of the TLM results. This
structure closely approximates long, uniformly spaced intercon-
nects [8]. The interconnect aspect ratio is close to 2 for structures
found in microprocessors (Hint¼ 2W) and the dielectric thickness
is approximately equal to the interconnect height (Hd¼ 2W).
Interconnect pitch P is variable; we took P¼ 4W in this study.
The bottom surface is fixed at a constant temperature (T¼ 0) and
all other surfaces are assumed to be adiabatic. The continuum
assumption of our modeling approach was verified by calculating
the Knudsen number:

Kn ¼ k
L

(23)

where k is the molecular mean free path and L the smallest length
scale in the problem [13]. The continuum approach is valid as
long as Kn� 1.0. We calculate Kn¼ 0.22 based on the mean free
path of copper molecules at 20 �C (k¼ 39 nm) and the width of
interconnects (L¼ 180 nm); this justifies that the continuum
approach is valid.

The FE model consists of 561 nodes (17� 33) and 512 ele-
ments. The TLM nodes were selected at the center of FE elements
(512 nodes). The interconnect width chosen was W¼ 180 nm,
similar to the interconnect width in Ref. [8]. The material proper-
ties for the metal and dielectric were specific heat capacity
Ch¼ 380 and 1000 J/kgK, density q¼ 8933 and 2200 kg/m3, and
thermal conductivity j¼ 400 and 0.17 W/mK, respectively. The
comparisons made in this study are for a case when the left-most
interconnect is carrying a current density of 10 MA/cm2 and the
volumetric heat generation is 2.2� 1014 W/m3 which is calculated
using a resistivity of 2.2 lX-cm.

The FE solver LSDyna (LSTC, Livermore, Calif., USA) for
nonlinear multi-physics problems is used, with a variable time
step Crank-Nicholson scheme. The FE solver was validated in a

Fig. 3 Schematic of the model consisting of a set of W 5 180
nm wide interconnects that are evenly spaced and embedded in
the dielectric. The mesh used in the FEA technique is shown. In
this study: Hint 5 Hd 5 2W and P 5 4W.
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homogenous 2D problem for which an analytical solution existed
[9]. The time step for FE simulations was 1.72 ns.

At each TLM node, considering the inhomogeneity of the
model, the resistance and capacitance were defined as [12]

Rðx; yÞ ¼ 0:5
dx

Ajðx; yÞ (24)

Cðx; yÞ ¼ Adxqðx; yÞChðx; yÞ (25)

where dx is the length and A is the cross-sectional area of each
element, with the thickness equal to 1 lm. The impedance at each
node was, therefore,

Zðx; yÞ ¼ dt

0:5Cðx; yÞ (26)

The thermal time constant RC of the dielectric material was 25 ns.
The TLM time step was chosen smaller than the minimum ther-
mal time constant, i.e., dt¼ 10, 1.0, and 0.1 ns. For comparison,
the TLM and FE results were stored at every 1 ls.

The source term in the TLM model was

Vexðx; yÞ ¼
1

4
AdxIðx; yÞZðx; yÞ (27)

for the LR model and

Vexðx; yÞ ¼
1

4
AdxIðx; yÞ Zðx; yÞ þ Rðx; yÞ½ � (28)

for the LL model. In Eqs. (27) and (28), I(x, y) is the volumetric heat
source. Vex was added to the nodal temperatures at each iteration.

Results and Comparison

Figures 4(a) and 4(b) show the results for the spatial variation
of temperature at 14 ls from FE and LR TLM respectively.
As expected, heat propagates through the structure from left to
right and top to bottom due to the heat source at the left-most

interconnect. The temperature within an interconnect stays almost
constant due to its relatively high conductivity. Due to the
adiabatic boundary conditions, the temperature contours are per-
pendicular to the top and left edges.

To get a more detailed comparison of the LR TLM and FE
results, the top edge of the structure was selected. Figure 5 dem-
onstrates the comparison of the longitudinal spatial variation of
the temperature for the upper edge at five different times between
the two models (LR TLM (solid line) and FE (marked line)). The
general trend is the decay of temperature along the x-axis. As dis-
cussed in Fig. 4, the temperature stays constant along the widths
of interconnects. The maximum deviation of the LR TLM from
FE results is 7.7%, which happens along the left-most intercon-
nect, where the heat source is located. The difference between the
two models decreases along the x-axis from left to right and it
also decreases with the increase in time as it gets closer to the
steady state.

The analysis of the time step dependency of the LR TLM is
demonstrated in Fig. 6. The change of the temperature for the
upper edge of the structure along the x-axis is plotted using three
values of Dt: 10, 1, and 0.1 ns. It can be seen that, for Dt less than
or equal to 1 ns, the results are independent of the Dt. It is impor-
tant to note that the thermal time constant RC, based on the dielec-
tric properties, was 25 ns. For Dt< 10 ns, results have a maximum
error of 5.8%. The error decreases along the x-axis from left to
right.

The transient response of the same structure under identical
boundary and initial conditions was studied using the LL TLM as

Fig. 4 Temperature contours in the interconnect and dielectric
(see Fig. 3) at 14 ls using (a) FE method and (b) LR TLM
method

Fig. 5 Comparison of spatial variation of temperature along
the x-axis at the upper edge (shown in the picture) by LR TLM
(solid line) and FE (marked line) methods at different times

Fig. 6 Analysis of the time step dependency of temperature
distribution along the x-axis at the upper edge for LR TLM using
time steps of 0.1, 1, and 10 ns
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well. Temperature along the x-axis at the upper edge at three dif-
ferent times computed from various methods is shown in Fig. 7. It
can be inferred from this figure that LL TLM grows slower than
LR TLM. In other words, the transient response of LL TLM lags

FE results more than LR TLM and thus, is less accurate. This has
also been addressed in Ref. [12]. The difference between the two
models, however, decreases along the x-axis as distance from the
heat source increases. It also decreases with time.

One of the other differences between the LL and LR TLM is in
their dependency on Dt. As discussed earlier for LR TLM, for any
Dt smaller than about one tenth of the smallest dielectric RC, the
model is independent of Dt. In this study for time-steps between
10 ns and 1.92 ns, results are valid and accurate for both models,
with a maximum error of 2.8% at steady state. For instance, the
variation of temperature in x-direction throughout the structure
with time step of 1.95 ns and 1.90 ns are demonstrated in Fig. 8(a)
and 8(b), respectively. However, for LL TLM, Dt< 1.92 ns causes
the model to become unstable. As demonstrated in Fig. 8(b), the
instability grows from the far right corner of the structure (high-
lighted in Fig. 8(c)) and arises closer to the steady-state situation.
It can be seen that the instability also happens at an earlier time as
the time step decreases. The source term in the TLM models
appears to be an important factor in the numerical oscillations and
instabilities mentioned above. Applying smoother input functions,
increasing the dimensions of the problem, and using the LR versus
LL formulations generally reduce such oscillations [11,12].

The value of m is calculated at two points: the upper-left cor-
ner (the interconnect region) and at 90 nm to the right of the first
point (the dielectric region). The values of m, root mean square
(RMS) over time for dt¼ 1 ns in the LR model, were 0.268 and
3.69� 10�5, respectively, which confirmed that the propagation
term in the TLM formulation was negligible. The reason behind
choosing the points mentioned is the high temperatures at these
locations. In implementing the control of Dt using Eq. (22), it is
important to avoid situations that lead to near-zero values of dV/
dt (< 10�8). Therefore, by averaging the values of m with
respect to time, the effect of oscillations was eliminated. The
RMS values of m, for three cases of dt¼ 0.1, 1, and 10 ns are
tabulated in Table 1.

The “average computational time” was defined as the ratio of
the computational time to the simulation time. This ratio was 4.68
s/ls for FE simulations. For the LR TLM code it was 1.20 s/ls for
dt¼ 10 ns and 11.87 for dt¼ 1 ns. Considering that the TLM code
was running in MATLAB environment, it can be concluded that,
with a standalone executable code, the TLM computational time
would decrease.

Discussion and Conclusions

In this study, 2D LR and LL TLM algorithms were imple-
mented for transient heat conduction in inhomogeneous arrange-
ments of interconnects and dielectrics. A two-dimensional case
study was presented and the TLM results were compared with the
transient FE results. The overall behavior of the TLM models was
similar to the FE model while, near the heat source, the transient
TLM solutions developed slower than the FE solution. The issue
of inaccuracy due to a voltage source being added at the boundary
has been addressed previously by investigators such as Ref. [12].
The steady-state results of the two models were in good agree-
ment with a maximum error of 2.8%.

Fig. 7 Comparison of spatial variation of temperature along
the x-axis at the upper edge by LR TLM (solid line), LL TLM
(dashed line), and FE results (marked line) at three different
times

Fig. 8 Observation of the time step dependency of the temper-
ature in LL TLM method along x-axis throughout the structure
with time steps of (a) Dt 5 1.95 ns and (b) Dt 5 1.9 ns. (c) Sche-
matic of structure with highlighted region where the instability
grows when time step is less than 1.92 ns.

Table 1 The RMS values of m calculated at two points: the
upper-left corner (the interconnect region) and at 90 nm to the
right of the first point (the dielectric region) for three cases of
dt 5 0.1, 1, and 10 ns

RMS value of “m”

time step (ns)
interconnect

with the source
dielectric adjacent

to the source

10 ns 15.730 0.006
1 ns 0.268 3.69� 10�5

0.1 ns 0.0003 1.96� 10�7
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Two distinct TLM formulations, LR and LL, were implemented
and compared. The two formulations yielded slightly different
transient results, with the LL result growing slower, particularly at
the source boundary. The LR formulation results were closer to
the FE results. It was shown that the stability of the LL results
depends on the time step. Below a maximum time step, the LL
results showed instability that started from the insulating bound-
ary. Similar observations have been reported by Refs. [11] and
[12], who indicated that the LR formulation is more accurate for
transient thermal analysis.

An important feature to be added to this study is the use of a
special type of mesh refinement called quad-tree mesh. Quad-tree
mesh has the ability to increase the mesh resolution dramatically
in a rather short length scale and; therefore, to generate a non-
uniform mesh along different directions. Using a quad-tree mesh
with TLM method, an inhomogeneous multi-scale structure can
be simulated in a reasonable simulation time by having locally
refined mesh resolution at points of interests.

In the transient solution of heat diffusion equation, the initial
time step should be smaller than the thermal time constant for the
physics of the problem to be captured accurately. However, for a
constant heat source, as the solution reaches the steady state, the
rate of change of temperature as a function of time decreases. An
important feature of the TLM model is the ability to accept a vari-
able time step. Therefore, by using an adjustable time step during
the TLM simulation, the computational time can be dramatically
decreased [9].
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