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Several studies have validated that diffusive Fourier model is inadequate to model ther-
mal transport at submicron length scales. Hence, Boltzmann transport equation (BTE) is
being utilized to improve thermal predictions in electronic devices, where ballistic effects
dominate. In this work, we investigated the steady-state thermal transport in a gallium
nitride (GaN) film using the BTE. The phonon properties of GaN for BTE simulations are
calculated from first principles—density functional theory (DFT). Despite parallelization,
solving the BTE is quite expensive and requires significant computational resources.
Here, we propose two methods to accelerate the process of solving the BTE without sig-
nificant loss of accuracy in temperature prediction. The first one is to use the Fourier
model away from the hot-spot in the device where ballistic effects can be neglected and
then couple it with a BTE model for the region close to hot-spot. The second method is to
accelerate the BTE model itself by using an adaptive model which is faster to solve as
BTE for phonon modes with low Knudsen number is replaced with a Fourier like equa-
tion. Both these methods involve choosing a cutoff parameter based on the phonon mean
free path (mfp). For a GaN-based device considered in the present work, the first method
decreases the computational time by about 70%, whereas the adaptive method reduces it
by 60% compared to the case where full BTE is solved across the entire domain. Using
both the methods together reduces the overall computational time by more than 85%. The
methods proposed here are general and can be used for any material. These approaches
are quite valuable for multiscale thermal modeling in solving device level problems at a

faster pace without a significant loss of accuracy. [DOI: 10.1115/1.4036616]

1 Introduction

As the size of microelectronic devices reduces, the modeling of
heat transfer becomes more challenging. This is mainly because
of the ballistic nature of phonons, which arise when the size of the
device approaches the same order as of the phonon mean free path
(mfp). At such length scales, not all the phonons undergo scatter-
ing, and thus, the thermal transport deviate from the purely diffu-
sive regime [1]. Hence, Fourier law-based models are found to be
inadequate as they yield erroneous results for temperature at these
length scales. Recently, it has also been demonstrated that certain
phonon modes would not contribute to thermal transport process
if the size of the heat source is smaller than their mean free path
[2,3]. Any model that aims to model thermal transport in such
devices should serve the dual purpose of taking into account these
ballistic effects and should also recover the bulk diffusive behav-
ior at larger length scales. The semiclassical BTE fits this descrip-
tion precisely and hence widely used to describe the transport of
phonons at such mesoscopic length scales where wave effects can
be neglected [4]. The description of the physical space of the
geometry and the wave vector space of phonons of the material
serve as inputs to solve the BTE model [5]. The information on
phonon wave vector space (phonon dispersion and relaxation
times) of any material is typically obtained from first-principles
calculations [6]. Simplified approaches like gray and two fluid
models were proposed earlier to solve the BTE [5]. Though, they
can account for the ballistic and boundary scattering effects, they
would not account for different polarizations and the entire pho-
non scattering in the domain and thereby fails to predict the tem-
perature accurately. This has been clearly demonstrated by
Narumanchi et al. in a silicon-based device by comparing the
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results against the BTE solved with full dispersion [7,8]. Similar
BTE calculations with full dispersion were also performed by var-
ious research groups mostly in silicon and germanium [9-11].

Gallium nitride (GaN) based high electron mobility transistors
(HEMTsS) are strong candidates for the future high power applica-
tions due to the superior properties of AlGaN/GaN hetero-
structure such as high carrier saturation velocity, wide band gap,
breakdown field, and thermal conductivity [12-14]. Heat dissipa-
tion is a huge challenge that needs to be solved to enhance the
reliability and operation of these devices. It is important to under-
stand the thermal transport mechanisms and estimate the maxi-
mum temperatures in these devices accurately. Hence, in the
current study, we solved the nongray BTE model for a gallium
nitride (GaN) semiconducting layer typically used in HEMTs.

The wide spread in phonon relaxation times (typically over
three orders of magnitude) and the large number of equations
(~10% for GaN HEMT) that need to be solved simultaneously
makes BTE computationally expensive. Researchers have sug-
gested different techniques to parallelize [15,16] and to accelerate
the convergence mostly in the context of radiation transport equa-
tion (RTE) [9,17-21] which is similar to BTE. For brevity, we dis-
cuss here only some of the studies relevant to the present work.
Adams and Larsen proposed several techniques for solving the
RTE iteratively using techniques like mesh rebalance, Chebychev
acceleration, source extrapolation, synthetic acceleration [22]. But
they all have convergence issues for high scattering ratio. Techni-
ques like successive over-relaxation for the discrete ordinates
method perform well only in the limit of high mesh-based optical
thickness [18]. Mathur and Murthy proposed the COMET to
accelerate convergence of the RTE by solving the discrete energy
and intensity equations at each cell simultaneously [21]. Loy et al.
extended this technique to solve the phonon BTE in silicon and
demonstrated acceleration by a factor of 10-300 over the existing
sequential methods [23]. They also proposed a hybrid
BTE-Fourier solver in which the BTEs of optical phonons are
replaced with a Fourier model like equation [24] in silicon and
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obtained speedup factors between 2 and 200 depending on the
band lattice ratio and Knudsen number (Kn). Allu and Mazumder
used a similar technique to treat phonons with low Kn with an iso-
tropic P, approximation instead of BTE. This approach reduces the
computational time [25] for both steady-state and transient prob-
lems in 2D and 3D geometries. This hybrid solution method (also
referred as adaptive method here) can also provide fast and accu-
rate solution for temperature profile in GaN-based devices, but
such methods have not been employed yet for these devices in con-
junction with the COMET algorithm. The size of the GaN HEMTs
can be very large (~50 um), larger than the conventional Si-based
transistors used in complementary metal-oxide semiconductor
(CMOS), and it is not computationally feasible to solve the BTE
over the entire HEMT. There is a need to couple Fourier and BTE
models by facilitating efficient exchange of information between
the two domains for fast and accurate temperature predictions in
GaN devices. These techniques will also allow efficient handling of
materials interfaces where exact atomic structure and phonon trans-
mission is not known but thermal boundary resistances (TBRs) are
available from the experiments. Developing such model, further
accelerating the computation in the BTE domain using adaptive
method discussed above, and employment of the developed model
on a GaN layer typically used in the HEMTs are the focus of the
present work. Solving BTE involves traversing both physical and
wave vector spaces. The algorithms used to solve BTE are broadly
categorized into two groups: sequential method and COMET. In the
sequential method, a phonon wave vector is chosen and solved for
all the cells in the physical space before moving to the next phonon
wave vector. In the COMET, the process is reversed, a cell in the
physical space is chosen, and all the wave vectors in that cell are
solved before moving to the next cell. Though, both methods yields
identical results, and which method converges quickly is decided by
the Knudsen number (ratio of phonon mfp to the length scale of the
domain) [23]. In the current study, we adopted the COMET tech-
nique to solve the BTE in a GaN layer. As mentioned above, it is
essential to solve BTE near the hot spot to capture the ballistic
effects and recover the Fourier (diffusive) like behavior away from
the hot-spot. In this context, we examined ways to couple the BTE
and Fourier models to reduce the computational time. This tech-
nique will be quite useful in modeling the substrate along with the
device to obtain temperature profile as will be discussed later in the
manuscript.

In the current work, we considered a GaN device of size 50 um
(typical gate to gate distance) x 2 um discretized with a uniform
cell size of 0.1 um. The K-space (reciprocal space) of GaN is also
discretized using a MonkHorst-pack grid of size 16 x 16 x 4 with
12 polarizations. Here, 12,288 BTEs need to be solved at each of
the 10,000 cells in the physical space. These kind of calculations
requires an enormous amount of computational and storage
capacity to carry out iteratively to achieve convergence. The cur-
rent work present two methods to significantly reduce the compu-
tational time required to predict temperature distribution in the
GaN layer of HEMT without a significant loss of accuracy.
The first one is to use Fourier model away from the hot spot in the
channel region of device where ballistic effects can be neglected
and then couple it with a BTE model for the region close to hot-
spot. The heat flux and temperature information are exchanged
across the shared boundary between the two models to ensure con-
tinuity in heat flux and temperature. This method can be easily
extended to device scale simulations where the substrate can be
treated with the Fourier model and the device (or just a portion of
it) with BTE. Such multiscale model will enable the thermal simu-
lations of large GaN-based electronic packages by applying the
BTE model only close to the hot spot region, thus reducing the
computational time significantly.

The second method is to accelerate the BTE model itself by
using the adaptive method. This approach was earlier utilized by
Loy et al., where the BTE was solved with the sequential method
[24]. But, in the current work, we solved the BTE with COMET
algorithm while employing the adaptive method. The COMET
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method is faster than the sequential method as demonstrated by
Loy et al. in the case of silicon. In our work, we would like to
accelerate it even further by using the adaptive method. The pho-
non properties of GaN (phonon dispersion, group velocities, and
relaxation times) for BTE simulations are calculated from first
principles—DFT. The details of our approach are presented in
Sec. 2. To the best of our knowledge, this is the first time, the
modeling techniques like the ones mentioned above are employed
to solve BTE in GaN. We have observed that the overall time to
achieve converged solution can be reduced by more than 85%.
The methods presented here are quite general and are applicable
to any material of interest.

2  Numerical Methodology
2.1 BTE for Phonon Transport. The steady-state nongray

BTE of a phonon mode discretized using finite volume method
(FVM) under relaxation time approximation (RTA) [4] is defined
as
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Here, ¢” is the energy of the phonon mode, and ¢’ is the equi-
librium energy evaluated at the cell (denoted by c¢) centroid, v is
the phonon group velocity, w is the phonon frequency, AV repre-
sents the volume of each cell in the physical space, and Ay is the
area vector associated with face f of a cell in the physical domain.
T.¢r 1S the effective phonon relaxation time that includes contribu-
tion from different mechanisms like the intrinsic phonon—phonon
scattering, defects, and impurities, and so on. Sy, is the external
volumetric heat source which represents the Joule heating in the
current case. N is the equilibrium Bose—Einstein distribution cor-
responding to the phonon mode with frequency o, polarization p,
and temperature T. Parameters like ¢”, v, and 7.4 are all unique
to a particular phonon mode, but not shown in Eq. (1) for brevity.
Direct coupling of all these BTEs requires denser discretization
of the phonon wave vector space that makes them extremely
expensive to solve. Hence, RTA is employed to simplify the
scattering term on the right-hand side of the BTE. In RTA, all
the BTEs of a physical space cell are coupled through the lattice
temperature to ensure energy conservation. In the current study,
the BTE has been solved iteratively using COMET as mentioned
above, where all the phonon modes within a physical space cell
are solved together directly in a matrix form before moving to
the next cell. The physical space cells are divided among
multiple processors as part of the parallelization. More details
on solving the BTE using COMET algorithm are presented in
Ref. [23].

2.2 BTE-Fourier Coupling. Figure 1 shows the schematic
of a GaN HEMT, where the lateral width of the device is 50 um.
It includes the GaN buffer layer (2 um thick) on top of silicon sub-
strate (330 um thick). In this device, AIGaN/GaN heterostructure
leads to the formation of a two-dimensional electron gas (2DEG)
in GaN layer at the interface. This 2DEG region acts as the chan-
nel (6.5 yum x 6 nm) of the GaN HEMT where most of the power
dissipation occurs due to Joule heating. As mentioned in Sec. 1,
solving BTE is computationally challenging, especially when one
has to use dense grids near the hot spot for better accuracy and
capture the spatial temperature variation. But away from the hot
spot, the temperature variation will recover the diffusive behavior
and a Fourier model would be adequate to study the spatial varia-
tion. Hence, multiscale models that encapsulate BTE in the ballis-
tic region and Fourier model in the diffusive region are the best
approaches to study the thermal issues at a device level in an effi-
cient manner. The right side of Fig. 1 shows the schematic of the
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Fig. 1 (Left) block diagram of a GaN device with silicon substrate and AlGaN dielectric layer. (Right) schematic
of the GaN buffer of size 50 yum x 2 um divided into BTE and Fourier domain; the thick red line indicates the
channel region where the energy is added. The exchange of temperature and heat flux information at the com-
mon interface is demonstrated in the bottom panel (see color figure online).

computational domain, i.e., GaN buffer region where we applied
the multiscale approach by coupling Fourier and BTE models.
The region highlighted in red is gate (G) electrode of the device
below which hot spots typically appear due to the maximum heat
generation [26]. Temperature prediction with high accuracy in
this region is desired for efficient thermal management and device
design. Hence, we solve BTE in the region close to the hot-spot,
and on either sides of this region we employ diffusive Fourier
model to resolve the lattice temperature distribution.

One of the main challenges in solving the multiscale model is
the coupling between the BTE and Fourier models. If both
domains are of the same material, then the continuity has to be
maintained in both temperature and heat flux. If they are of differ-
ent materials, there will be continuity in heat flux at the interface,
but the thermal boundary resistance (TBR) leads to temperature
drop at the interface [27]. We have considered two cases to dem-
onstrate the effectiveness of our approach. In the first case, we
have same material on both sides (GaN), and the two interfaces
can be noticed from Fig. 1. At every interface, exchange of data
on temperature and heat flux happens back and forth to ensure
continuity. The information need to be exchanged to other domain
is incorporated as the boundary conditions to that domain, e.g.,
either constant temperature (isothermal) or constant heat flux at
the interface as demonstrated in the bottom panel of Fig. 1. Here,
we calculate the wall temperature on the Fourier side of the inter-
face and pass it to the BTE domain so that it can be used as the
isothermal boundary condition and subsequently pass the interfa-
cial heat flux from BTE to Fourier domain which in turn is used
as the constant heat flux boundary condition. The size of the BTE
domain is determined by the phonon mean free path (mfp) of the

Initialize lattice temperature and
chose a Kn cutoff (Kn,)

l

Solve the BTE for phonon modes
above the cutofl’

l

Solve the Fourier model for the
remaining modes

l

Update the lattice temperature
with contribution from all modes

Repeat it for
all cells and
check for
convergence

Finish

Fig. 2 Flowchart showing the algorithm used for the adaptive
BTE model

Journal of Heat Transfer

material of interest (GaN in our case). We have to ensure that the
diffusive behavior is recovered at the end of the BTE domain.
This happens when the domain size is larger than the maximum
mfp. The maximum mfp in GaN is about 6 um as shown in
Fig. 3(d), and hence, we have decided to have a BTE domain of
15 pm encompassed by two Fourier domains of 17.5 um on both
sides. Choosing a BTE domain size close to the maximum phonon
mfp could result in a temperature drop at the interface due to the
ballistic effects which is erroneous. The bottom wall of the entire
domain (it is in contact with substrate in actual device) has iso-
thermal boundary conditions at 300K, whereas the other three
walls have adiabatic boundary conditions. The Joule heating is
accounted for as a volumetric heat source close to the top edge of
the GaN domain as shown in Fig. 1.

We have also demonstrated the use of this method by applying
it across an interface of GaN and silicon. Silicon is widely used as
a substrate in GaN electronic devices, and the corresponding TBR
for GaN-Si interface calculated from diffusive mismatch model
(DMM) is 3.25 x 1072 m? K/W [11]. In our case, we have chosen
a GaN domain whose length is 15um to avoid any ballistic
effects. We have also chosen the size of silicon region to be
15 um for convenience. The exchange of heat flux across the inter-
face via the boundary conditions is same as mentioned above. But
the temperature is modified based on the magnitude of TBR
before applying on the other side of the interface as isothermal
boundary condition. The effects of phonon transmission and
reflection at the interface are indirectly accounted for by the TBR.
We applied an energy source on top of GaN and let the heat pass
through the interface by applying isothermal boundary condition
on the bottom of the silicon substrate and adiabatic conditions on
all other sides as shown in the inset of Fig. 5. Power distribution
in the channel is obtained from hydrodynamic simulations of elec-
trical transport using technology computer-aided design (TCAD)
Sentaurus package at drain voltage (Vp) =10V and gate voltage
(Vo)=0V [28].

2.3 Adaptive Method. The reciprocal (wave vector) space of
GaN is discretized into 1024 K-points for each phonon polariza-
tion. If one were to solve all the 12 phonon polarizations in GaN,
it means that 12,288 BTEs are to be solved at each cell in the
physical space cell. Although, the BTE-Fourier method men-
tioned in Sec. 2.2 is effective in reducing the BTE domain size, it
is still quite expensive especially if one wants to use a denser
physical mesh near the hot spot. Hence, techniques that can accel-
erate BTE directly are necessary to improve the efficiency. One
such method is the adaptive method [24], in which the phonon
modes are divided into two groups based on their Knudsen num-
ber (Kn). Kn of a phonon mode is defined as the ratio of phonon
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Fig. 3 (a) Phonon dispersion of GaN from DFT calculations. The red dots shows the comparison with experi-
ments from Ref. [32], and the blue lines show DFT results; (b) phonon relaxation time (z) in picoseconds as a
function of frequency at room temperature; (c¢) thermal conductivity of GaN as a function of temperature; (d)
phonon mean free path of GaN as a function of frequency at room temperature (see color figure online).
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Fig. 4 Lattice temperature variation in the domain along the
x-direction at the middle of the buffer (dotted line in the inset)
at y=1.9x10"%ym. The Fourier model significantly under-
predicts the hot-spot temperature.
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mean free path (product of group velocity and relaxation time) to
the length scale of the domain. Subsequently, BTE is only solved
for those with high Kn which exhibit ballistic effects. The low Kn
modes exhibit diffuse like behavior, and these can be solved sim-
ply using a Fourier like equation, but not exactly Fourier equation,
instead of BTE. This method would be quite efficient for GaN
since there are nine optical phonon polarizations. Optical phonons
typically have low group velocities and short relaxation times,
hence modeling them with Fourier instead of BTE would reduce
the computational time significantly. The governing BTE with
relaxation time approximation is given by Eq. (1), which can be
integrated over all directions and converted into an equation rep-
resenting the equivalent temperature 7 of that mode

V- (xvn) =S (1 - 1) @

T

This Eq. (2) is similar to a Fourier conduction equation of the
phonon mode with an additional source term on the right-hand
side, and hence, we call it as Fourier like equation. Here, x, C,
and 7 are the thermal conductivity, specific heat, and relaxation
times of a phonon mode, respectivley. 7; is the overall lattice tem-
perature, and 7 is the corresponding temperature of the individual
phonon mode. Each of the phonon modes will be characterized
either by BTE or the Fourier based on their mfp. Solving the Fou-
rier like equation instead of BTE is less compute intense because
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Fig. 5 Lattice temperature variation in the domain along the y-
direction at the middle of the buffer (x=1.0 x 107 um). Inset
shows the schematic of the domain with the GaN-Si interface
along with boundary conditions. The thick red box indicates
the region over which energy is added. The right-hand side
panel shows the nonlinear temperature variation near the
source on GaN side (see color figure online).

the reciprocal space need not be resolved. The result of both these
models is coupled together by the energy conservation condition
which is used to compute the lattice temperature at the end of
each iteration. The lattice temperature computed from the equa-
tion below determines the equilibrium energy of the phonons in
both the models

BTE Four
Cm T — Tm Cm T, — T(u
Z ,P( L >p)+z >P( L ,[7) =0 (3)

‘C(U‘p T(U‘p

w,p w,p
The general algorithm used to solve the adaptive method is
shown in the flowchart in Fig. 2. In this method, at each cell in the
physical domain, all the Fourier modes are solved first, and the
lattice temperature is updated. Subsequently, BTE is solved for
the phonon modes with higher Knudsen number, and its contribu-
tion is updated to the lattice temperature before going to the next
cell. The whole process is repeated until convergence. Knudsen
number cutoff of 0.05 is chosen, unless specified differently, to
divide the total number of phonon modes into Fourier and BTE
modes.

2.4 Computational Details of GaN Phonon Properties. The
phonon dispersion and relaxation times for GaN are calculated
from the DFT [29] using Vienna ab initio simulation package
(VASP) [30] following the methodology presented in Ref. [31]
and briefly described next. The first principle calculations to
obtain second-and third-order force constants are performed using
the VASP package. The norm-conserving local-density approxi-
mation (LDA) pseudo potentials are used in these calculations,
and the kinetic energy cut-off for wave-functions is 80 Rydberg.
The harmonic (second-order) force constants are computed on a
primitive unit cell using density functional perturbation theory
(DFPT). The nonanalytical part of the dynamical matrices are
considered by including the Born effective charge. The lattice
constants chosen for the primitive hexagonal cell are
a=0.3086nm and ¢ =0.5023 nm. These parameters were tuned
so that the predicted phonon dispersion matches the experimental
results [32] as shown in Fig. 3(a). The third-order force constants
were computed using the finite difference method on a 3 x 3 x 3

Journal of Heat Transfer

supercell. A displacement of 0.01 A s systematically applied on
selected atoms of the supercell, and the forces from DFT calcula-
tions are used to construct the third-order force constants. The lat-
tice symmetry is considered using a Python tool in order to reduce
the number of displacements. Generally, the relaxation time
approximations (RTAs) are employed in many studies in which
Fermi golden rule is used to calculate the phonon scattering rates.
For GaN, the RTA predictions are quite close to the iterative solu-
tion of BTEs [31]. Based on the second- and third-order force con-
stants from first principle calculations, an open source package
(ShengBTE) has been employed to calculate the phonon relaxa-
tion times [33]. In this study, a 32 x 32 x 16 g-point grid is used
to obtain the converged phonon relaxation times for the pristine
GaN crystal at any desired temperature. The corresponding pho-
non relaxation times are plotted in Fig. 3(b) as a function of
frequency.

After obtaining the phonon relaxation times, we performed
BTE calculations on a 50 -um long thin GaN film under a constant
temperature difference to estimate thermal conductivity. The
obtained thermal conductivity is plotted as a function of tempera-
ture in Fig. 3(c) along with two other studies in the literature
based on a similar approach [31,34]. It can be noticed from the
plot that our values are in excellent agreement with them. After
validating our DFT results, we explored the techniques to acceler-
ate the BTE calculations. The phonon mfp is an important param-
eter used in optimizing these techniques, and its variation as a
function of frequency, at room temperature, for GaN is plotted in
Fig. 3(d). Though the DFT results are sensitive to input parameters
like pseudo potentials used in the calculation, they would not have
any significant impact on the conclusions of this work.

3 Results and Discussion

3.1 BTE-Fourier method. First, we modeled the entire
domain using nongray BTE. We discretized the physical domain
of 50 um x 2 um with a uniform cell size of 0.1 um x 0.1 um
resulting in 10,000 cells and 1024 cells in the K-space with 12
polarizations each. The nongray BTE is solved iteratively until
convergence using 64 AMD Opteron “Abu Dhabi” @ 2.4 GHz
processors. Then, in the second case, only 15 um in the middle is
modeled using BTE, and the remaining 35 um with the Fourier
model. The BTE and Fourier models are simulated in each itera-
tion, and the boundary temperature and heat flux information are
exchanged at every iteration as explained in Sec. 2.2. This simula-
tion is performed until convergence on the same number of

2 -
51.5 ?
e |
=
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N |
]
2t
k= i
5 i
@ =
=
E |
05F
0 L 1 L | L L | L L 1 L L L
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Fig. 6 Error in heat flux with respect to full BTE as a function
of Kn cutoff
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processors, similar to the full BTE case. It should be noted that
running Fourier and BTE models just once in each iteration might
give rise to issues with convergence. The convergence is sensitive
to the rate of information exchange between BTE and Fourier
models and sometimes could lead to overall instability. Hence, for
every single iteration of the Fourier model, the BTE model is ran
10 times to ensure that sufficient heat flux is passed to the Fourier
side and thereby facilitating convergence. Alternatively, an under-
relaxation technique can be used as well to reduce the change in
temperature of the Fourier domain at the common interface. The
lattice temperature profile across the entire domain, at the middle
along x direction, is plotted in Fig. 4 for both cases along with the
Fourier model. The lattice temperature in BTE domain is the spe-
cific heat-averaged temperatures of all the individual phonon
modes. The temperature variation is smooth across the interfaces
which makes the temperature profiles in both cases identical. A
major portion of the input energy from heat source leaves the
domain through the bottom face which has isothermal boundary
conditions. Heat flow in the lateral direction is comparatively low
due to the high aspect ratio of the physical domain. Since the BTE
domain is reduced by one-third, correspondingly, the time taken
for each iteration in the second case also reduced significantly.
The time taken to solve the Fourier equation once within the same
iteration is negligible when compared to that of the BTE. Hence,
the overall computational time is proportional to the number of
cells in the BTE domain (Ng). In the current case, we used
BTE for 15 um which corresponds to Ny = 3000. It corresponds to
a fraction (0.3) of the total cells in the domain. So, the

computational time will be reduced by the factor Nz/N, where N is
the total number of cells in the entire domain. Hence, in the cur-
rent case, the total computational time is reduced by a factor of
0.3 which is approximately 70% less than the time taken for full
BTE solution. It can be observed from Fig. 4 that the lattice tem-
perature obtained from Fourier model (maximum is 321K) is
much less compared to BTE model (maximum is 392K) in the
central region near the gate. It is expected that the diffusive Fou-
rier model cannot capture the ballistic effects.

For the case of domain with GaN-Si interface, a similar tem-
perature profile is plotted in Fig. 5 at the center line along the
GaN-Si interface, where the GaN region is modeled with BTE,
and the silicon region is modeled with Fourier. Due to the TBR, a
small temperature drop of about 3K is observed at the interface.
This drop is consistent with the temperature drop estimated by mul-
tiplying the applied heat flux with TBR (AT =q"*TBR). The tem-
perature dependence of phonon specific heat and relaxation times
in GaN and thermal conductivity in silicon leads to the nonlinear
temperature profile. It emphasizes the necessity to utilize BTE
models to predict thermal transport in devices accurately. Both
these cases demonstrate the effectiveness of our coupling algorithm
in simulating thermal transport in devices.

3.2 Adaptive Method. After coupling BTE and Fourier mod-
els, we present the results using the adaptive method in this sec-
tion. Our objective using this method is to reduce the
computational time even further based on the algorithm explained
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the region highlighted in red from, (b) full BTE, (c) adaptive BTE, and (d) Fourier (the legend for temperature is same for the

three cases (b), (¢), and (d)) (see color figure online).

102701-6 / Vol. 139, OCTOBER 2017

Transactions of the ASME

Downloaded From: https://heattransfer.asmedigitalcollection.asme.or g/ on 12/24/2017 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



120 12
100} s
I s
g S0F S
b1 = of
= £
=60 [
s 4—
40 -
i 21
, (@) i (b)
20— 1 UM [N S W S T ST S [ S S—" Gl‘klk‘lkll‘llkkll
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Kn cutoff Kn cutoff

Fig. 8 Average time per iteration in seconds and error in maximum temperature as a function
of Knudsen number cutoff for adaptive model (BTE is considered in only middle region of the

domain, i.e., Fr + Adap. BTE + Fr model).

in Sec. 2. We first tested this methodology and the Kn cutoff on a
simple one-dimensional heat transfer case where a 5-um long
block with adiabatic boundary conditions are applied on top and
bottom faces. A temperature difference of 10K (295K, 305K) is
applied between the two ends, and the heat flux is obtained using
adaptive BTE approach for different cutoffs and compared with
the full BTE case. It can be noticed in Fig. 6 that the error in heat
flux increases with increase in Kn cutoff as expected. For a Kn
cutoff of 0.05, the heat flux from the adaptive BTE and full BTE
differ by only 0.2% while yielding identical temperature profiles
validating our methodology. Subsequently, we applied this meth-
odology to reproduce the temperature profile of full BTE in two-
dimensional GaN region. We used a Kn cutoff of 0.05 which
means that phonon modes with mfp’s less than 100nm will be
solved with the Fourier like equation described in Eq. (2), and the
rest will be modeled using BTE. The discretization of the physical
and reciprocal domains is same as in the earlier case. Out of the
12,288 modes, about 8400 modes fall in the earlier category,
whereas the remaining falls in the later. It is the decrease in the
total number of BTEs that needs to be solved will reduce the com-
putational time significantly. One iteration of the combined BTE
and Fourier modes takes about 153 s which is approximately 60%
less than that of the full BTE case (360 s). We ran this simulation
iteratively until convergence and obtained the temperature profile
and compared it with that of the full BTE case. The results in
Fig. 7 validate our approach as adaptive method yields similar
result as the BTE in much less time.

Figure 7(a) shows the spatial distribution of lattice temperature
for the full BTE case across the entire domain. Due to the isother-
mal boundary condition at the bottom and the high aspect ratio,
heat transfer is mostly one dimensional. Though, the general vari-
ation in temperature looks similar in all cases, it is the magnitude
that varies among the three. The temperature distribution in the
vicinity of the channel is shown in Figs. 7(b)-7(d) for full BTE,
adaptive BTE, and Fourier, respectively. The maximum tempera-
ture in the full BTE case is 621 K, whereas it is only 530K in the
Fourier case (Fig. 7(d)). This full BTE case serves as the bench-
mark for the computational time and the maximum temperature.
The maximum temperature in the adaptive case for a Knudsen
number cutoff of 0.05 is 649.6K as shown in Fig. 7(c). This is
4.9% higher than the full BTE case, but the result can be obtained
in 25% less time compared to the same. It should be noted that the
temperature profile obtained using BTE—Fourier method is identi-
cal to that of the full BTE as shown in Fig. 4. But, using the adapt-
ive method yielded temperature slightly higher than the desired.
The corresponding heat flux from the bottom face after conver-
gence is identical to that of the full BTE case for any cutoff as the
principle of energy balance holds irrespective of the governing

Journal of Heat Transfer

equation. Increasing the Kn cutoff would accelerate the simulation
even more, but it would also increase the error. This is illustrated
in Fig. 8 below where the computational time and the error are
plotted as a function of the Kn cutoff for a case where both
BTE—Fourier and adaptive method are applied. The Kn cutoff of
zero in the figure below indicates the full BTE case. The cutoff is
increased gradually from O to 0.1 (200 nm cutoff in phonon mean
free path) in steps of 0.025, and the average computational time
per iteration and error are calculated in each case. Increasing the
cutoff implies that a lower number of modes are solved using the
BTE and that would reduce the computational time. Hence, the
computational time per iteration dropped from 120s to 20s for a
Kn cutoff of 0.1. But the corresponding maximum temperature in
the channel is higher than the full BTE case by more than 10%.
The location of the source at the top edge along with reflective
boundary conditions used in BTE could be the main reason for the
error in the temperature estimation. One must chose the cutoff
carefully depending on the desired level of accuracy and the avail-
able computational resources. Finally, we compared the average
time taken per iteration in the four different cases discussed above
on same number of processors in Fig. 9. The first case is the full
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Fig. 9 Average time per iteration in seconds for the four meth-
ods considered
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BTE case where only BTE is used across the entire domain, and
in the second case is where we used Fourier model on both sides
of the BTE domain (Fr +BTE + Fr). The third case is that of the
adaptive BTE (Adap. BTE) where BTE is used across the entire
domain but the phonon modes are separated into two categories
based on their mfp. The fourth case is one in which we combine
the second and third cases together (Fr 4+ Adap. BTE + Fr). It can
be noticed from the figure that the average time taken per iteration
reduces significantly by 60—70% in either of the two methods and
combining the two methods would give a reduction of more than
85%. The full BTE case takes 360s per iteration, whereas
the combined case takes only about 54 s per iteration as shown in
Fig. 9.

4 Conclusions

In this work, we have studied different ways to accelerate the
solving the nongray Boltzmann Transport equation in a 2D
domain of GaN device. The first way is to model the domain
away from the hot spots with a Fourier model and then couple it
with BTE model for the region where ballistic effects must be
considered. The reduction in computational time in this case is
proportional to the number of cells in the BTE domain. This
method can be used either within the same material or across dif-
ferent materials with a finite interfacial TBR. The second way is
to replace the BTE for phonon modes with low mean free path
with a Fourier like model to accelerate convergence. Both meth-
ods are successful in accelerating the process by yielding a reduc-
tion of 60-70% computational time. The coupled BTE—Fourier
method yields the exact result as the full BTE, whereas the adapt-
ive method yield a higher estimate in temperature which is
dependent on the Kn cutoff used. Combining the two methods
would lead to an overall computational time reduction of more
than 85%. To the best of the author’s knowledge, such accelera-
tion techniques are applied to GaN for the first time. These techni-
ques would be quite useful in modeling large scale electronic
devices, such as multifinger GaN power amplifiers, much more
rapidly without compromising on accuracy.
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Nomenclature

C = volumetric specific heat capacity
¢” = phonon spectral energy density
h = reduced Planck’s constant
K = phonon wavevector magnitude
Kn = Knudsen number
L = characteristic length
mfp = phonon mean free path
7 = unit normal
N = phonon distribution function
g = heat flux vector
T = Temperature
v, = phonon group velocity
x = thermal conductivity
7 = phonon relaxation time
= phonon frequency
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