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Reconsidering Uncertainty from Frequency Domain 
Thermoreflectance Measurement and Novel Data Analysis by Deep 
Learning
Wenqing Shen , Diego Vaca, and Satish Kumar

G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

ABSTRACT
Frequency-domain thermoreflectance (FDTR) is a popular technique to inves-
tigate thermal properties of bulk and thin film materials. The FDTR data 
analysis involves fitting experimental data to a theoretical model whose 
accuracy may be affected by improper fitting approach and by convergence 
to local minima. This work proposes a novel data analysis approach using 
deep learning techniques. The developed deep learning model for FDTR (DL- 
FDTR) can accurately predict thermal conductivity, volumetric heat capacity 
and thermal boundary conductance with mean error below 5% for bulk 
samples coated with Au. DL-FDTR predictions can serve as an initial guess 
to the traditional fitting algorithms and can efficiently avoid local minima 
with regular fitting options, therefore improving the accuracy of data fitting 
and uncertainty evaluation.
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Introduction

In contrast to investigations of large bulk samples, investigating the thermal properties of nanoscale 
samples needs special techniques such as the 3ω method, time-domain thermoreflectance (TDTR) and 
frequency-domain thermoreflectance (FDTR) [1]. These techniques have different strengths and 
drawbacks. The 3ω method needs fabrication of a metal heater on the samples, while TDTR and 
FDTR are based on thermoreflectance and do not need complicated sample fabrication. The 3ω 
method is good at measuring cross-plane thermal conductivity but needs a narrower heater for the 
measurement of in-plane thermal conductivity of thin films [2]. The TDTR and FDTR methods have 
been widely used to study thermal conductivity, heat capacity, and thermal boundary conductance 
(TBC) of bulk materials [3–6] and thin films [6–8]. The TDTR and FDTR systems use a pump laser to 
heat the sample and a probe laser to detect the temperature response. The phase lag data between the 
pump and probe signals is fitted to a theoretical model to extract the unknown properties. In order to 
improve the signal to noise ratio, TDTR and FDTR usually require coating samples with a metal 
transducer of high thermoreflectance coefficient. TDTR uses a mechanical delay to tune the time delay 
between pump and probe signal, and thermal properties are extracted from the phase lag at different 
time delays. FDTR uses a modulated pump laser and extracts thermal properties from the phase lag 
using a range of modulation frequencies. TDTR with femtosecond pulsed laser might be better at the 
analysis of short time-scale non-equilibrium physics. FDTR, on the other hand, avoids the complex 
mechanical delay and could use less costly continuous lasers. Since FDTR only sweeps the modulation 
frequency, which can be easily tuned by a signal generator for pump modulation, its measurements 
can be obtained more quickly than those made using TDTR.
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FDTR and TDTR extract thermal properties by fitting measured data to a theoretical model, usually 
by least square fitting. The least square fitting task is in the form of argminβ f x; βð Þ � yj j

2, where β is 
a vector of unknown parameters, x is known parameters, f is the theoretical model function, and y is 
the measured data. Nonlinear data-fitting tasks can be solved by the Levenberg-Marquardt [9] and 
trust-region [10] methods. These traditional methods require a starting point and converge to the 
solution after several iterations. While obtaining a global minimum is desired in all these cases, these 
algorithms may fall into local minima if the starting point is not good enough.

Measurement uncertainty indicates the confidence level in the results, and it is tightly related with 
the sensitivity of the parameters. The sensitivity of measurement for both FDTR and TDTR depends 
on the range of parameters, such as modulation frequency, beam spot size, transducer thickness, and 
the properties of the material to be measured. Low sensitivity of a fitting parameter can cause high 
uncertainty in the estimation of that parameter. For example, to measure the through-plane thermal 
conductivity of a thin film sample on low thermal conductivity substrates, the sample usually needs to 
be thicker than the thermal penetration depth and the modulation frequency of the pump laser needs 
to be chosen accordingly [11]. In-plane thermal conductivity measurement requires the laser spot size 
to be similar to or smaller than in-plane thermal penetration depth [11]. When fitting multiple 
parameters together, strong correlation between the parameters also decreases the fitting sensitiv-
ity [12].

The uncertainty of FDTR and TDTR measurements can be estimated through analytical methods 
[12, 13] and Monte Carlo simulations [8, 12]. Analytical methods accumulate uncertainties from the 
parameters and measurements. The quality of analytical estimation depends on the assumption 
behind the method. The analytical model for FDTR can be in good agreement with Monte Carlo 
simulations for tested cases in Ref [12], while the analytical model for TDTR without considering the 
correlation between parameters may overestimate the uncertainty compared with Monte Carlo results 
when the sensitivity is low to unknown properties for the investigated cases [8]. The analytical method 
is fast for the calculations but requires the proper values of parameters to be measured. Monte Carlo 
simulation is robust for the unknown parameters, but the computation cost is high, and it requires 
a robust fitting approach. Without a proper initial guess, Monte Carlo results may not be accurate.

Samples having different thermal properties may produce results with different phase lags between 
pump and probe signals if the phase is sensitive to a corresponding unknown parameter. Deep 
learning methods can serve as efficient tools to learn the pattern behind the data, and have demon-
strated successes in many fields, such as object recognition [14, 15], and natural language processing 
[16]. To date, however, no study has been performed on deep learning application to FDTR data 
analysis, which will be the focus of the present work. This study first checks the uncertainty caused by 
local minima on the analysis of data measured by FDTR, and then demonstrates how a simple deep 
learning model can help in the prediction of thermal conductivity, heat capacity, and thermal 
boundary conductance while analyzing FDTR data. The deep learning model increased the fitting 
quality and uncertainty accuracy from Monte Carlo simulations by providing proper initial guess for 
data fitting.

Uncertainty caused by local minima while data-fitting

Data fitting seeks to minimize the residual and to find the global minimum point. Local minima are 
defined as points in the solution space that have a smaller residual than their near neighbors. For 
a 3-dimensional solution space, each point not at the boundary has 26 neighbors. The global minimum 
is the local minimum with the smallest residual among all the local minima. Depending on the fitting 
algorithms and initial guesses, the fitting may converge to any local minima. To check the effect of 
local minima, a discrete solution space is used. Phase lag data between the pump and probe signals is 
calculated for each sample by a theoretical model and is taken as a substitute for the experiment data. 
Each point in the solution space corresponds to its own phase lag data. For a sample, possible local 
minima resulting from the data fitting are searched by iterating through all points in the space and 
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comparing the norm of phase differences. For a typical bulk sample with a thin metal transducer, we 
consider 3 fitting parameters: the thermal conductivity (k) and volumetric heat capacity (C) of the bulk 
material, and the TBC (G) between the metal transducer and the bulk material. All the samples are 
assumed to be coated with 100 nm Au with thermal conductivity of 220 W/mK and volumetric heat 
capacity of 2.49 MJ/m3 K. The solution space has 20 points in log space between 0.1 and 10 for k (in W/ 
mK), 100 points in linear space between 11 and 180 (in W/mK) for k, 100 points in linear space 
between 1.4 and 3.2 (in MJ/m3 K) for C, and 100 points in linear space between 20 and 150 (in MW/m2 

K) for G. The spot radius is 6.79 and 1.70 μm for pump and probe beam, respectively. The pump 
modulation frequency sweeps 50 values between 0.1 MHz and 10 MHz in the log space.

The average max error from local minima is 19.14% for the thermal conductivity, 12.15% for the 
heat capacity, and 25.57% for the TBC. 10,000 samples are sampled from the solution space. For each 
sample, all local minima are found and the maximum percentage error from local minima for each 
parameter is calculated. Here the global minimum is already known, since the phase data is calculated 
based on the properties of the sample. Usually, there is only one global minimum for one set of phase 
data, especially when the space is discrete rather than continuous. The distribution of error caused by 
local minima is plotted in Figure 1. Note that this error is in addition to the error caused by the phase 
measurement and uncertainty in the controlled parameters. For FDTR data analysis, if the fitting 
algorithm is not robust and the initial guess is far from the true value, the fitting error can be much 
higher. On the other hand, if the initial guess can be determined within a narrow range, the issues 
caused by local minimum may not be important.

Deep learning for FDTR

Deep learning can be used to predict unknown properties from experimental data without requiring 
an initial guess. The architecture of the feedforward deep learning model (DL-FDTR) used in the 
current analysis is shown in Figure 2. The model input is a series of phase lags at various modulation 
frequencies, and the output is G, C, or k, depending on the prediction goal. The model can be trained 
for a specific system configuration, such as laser spot size, transducer properties, etc. Trained models 
can then take the phase lag data of an unknown material measured with the same configuration, and 
predict G, C, or k for the new sample. One model predicts one unknown material property, and three 
models are needed to predict G, C, and k. Like traditional multi-parameter fitting, none of G, C, or 
k are included as the known values to any DL-FDTR model, e.g., C or k is not known to DL-FDTR 
model for G. A similar architecture can also output a vector and predict G/C/k all at once, although 
that is not the approach in this study. All deep learning models are built and trained using Keras. The 
phase lag data is first normalized and then transformed to a fully connected (FC) layer. The first FC 
layer has an output size of 200 and uses the hyperbolic tangent (tanh) activation function. The output 
of the first batch normalization (BN) layer is concatenated to the output of the second BN. The 

Figure 1. Error caused by local minima (a) thermal conductivity; (b) heat capacity; (c) thermal boundary conductance. The x-axis 
presents the fraction of error, e.g., error of 0.5 for variable R means ΔR=R ¼ 0:5.
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concatenation is inspired by DenseNets [15], which densely connects convolution layers. Adding the 
concatenation makes the training process more efficient. The second FC layer has output size of 50 and 
uses ReLU activation function. The last FC uses ReLU activation and outputs one value as the final 
prediction. The major layers are FC, which are also called dense layers that connects each input node 
to each output node linearly. The activation function introduces non-linearity to the output of FC and 
makes it possible to learn complicated information. The FC200 layer has output size larger than the 
input size of 50 and learns the combinational information from phase at each frequency. The FC50 
and FC1 have output size smaller than input size and refine the characteristics of the input. The used 
architecture is not fully optimized but achieved sufficiently good performance. The training process 
uses the mean absolute percentage error as the loss function, which is consistent with the prediction 
goal.

Here the bulk material and thin film material are separately investigated. Training a deep 
learning model requires many samples, as the model learns from the statistics. To simplify the 
task, some assumptions are made: 1) all samples are coated by 100 nm Au with thermal 
conductivity of 220 W/mK and volumetric heat capacity of 2.49 MJ/m3 K; 2) the beam spot 
radius is 6.79 and 1.70 μm for pump and probe, respectively; 3) the pump modulation frequency 
sweeps 50 values between 0.1 MHz and 10 MHz in the log space; 4) the thin film thickness is 
300 nm and a Si substrate is used for all thin film samples. The sample dataset for the bulk 
material is the same as the solution space used in the previous Section. There are three variables 
k, C, and G for the bulk material. Thin film samples have four variables G1 (TBC between Au 
and thin film), G2 (TBC between substrate and thin film), C and k. Here the C and k are for the 
material whose properties need to be measured/predicted. The dataset for the thin film samples 
includes 10 points for G2 in the linear space between 20 and 150 (MW/m2 K). The dataset size is 
12,000,000 for the bulk material and 120,000,000 for the thin film material. Models with the 
same architecture are separately trained to predict G/G1/G2, C or k.

The developed DL-FDTR models can properly predict k, C, and G for both bulk and thin film 
materials. The percentage error distribution of DL-FDTR prediction for the bulk material is shown in 
Figure 3. The mean and standard deviation of error are listed in Table 1. The mean of absolute 
percentage error for all three parameters is less than 5%; this is much smaller than the error caused by 

Figure 3. Prediction error distribution for bulk material (a) k, (b) C, (c) G. The x-axis presents the fraction of error (ΔR=RÞ:

Figure 2. Architecture of deep learning model for DL-FDTR. FC200 has output size of 200 and uses tanh activation, FC50 has output 
size of 50 and uses ReLU activation. BN is batch normalization; FC1 is a fully connected dense layer whose output size is 1.
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local minima. Indistinguishable phase data caused by the strong correlation between material proper-
ties and low sensitivity can result in high prediction error. The results for thin film material are shown 
in Table 2. The mean absolute error for k, C, and G2 is below 12%. The mean absolute error for k and 
G2 is much higher than that of C and G1. The prediction performance for the thin films while 
considering four parameters is not as good as the performance for the bulk samples. Predicting four 
unknown parameters is more challenging than predicting three parameters because there is higher 
chance of strong correlation between the unknown parameters. Lower sensitivity could be another 
reason for higher average prediction error. If C is already known for the thin film, predicting for k, G1 
and G2 will be easier than predicting all the 4 known parameters. Assuming C = 1.64 MJ=m3K� 1, and 
training the model on the subset of the dataset, the average error for k is 7.14%, which is much lower 
than the case with four unknown parameters, as shown in Table 3 and Figure 4. The prediction 
performance of G1 and G2 does not change significantly. Based on these results, the developed DL- 
FDTR model can either be used to roughly estimate thermal properties, or it can serve as a tool to 
choose the proper starting point for traditional data fitting. Note that using a pre-trained model for 
prediction takes negligible time.

Application of DL-FDTR for Monte Carlo uncertainty analysis

The uncertainty of the FDTR system originates from the phase signal measurement acquired by the 
lock-in amplifier, parameters for fitting, and fitting accuracy. The phase signal uncertainty is an overall 
outcome of fluctuations from electrical components, such as the amplifier, and from the optical 
system, such as laser power. Model parameter uncertainty is from the input parameters for fitting. 
Extracting the properties of unknown material requires fitting the phase data with a theoretical model, 
which includes controlled parameters that are assumed to be known. For example, when fitting 
thermal conductivity, volumetric heat capacity, and thermal boundary conductance for a bulk mate-
rial, the controlled parameters include beam spot size, transducer’s thermal properties and transdu-
cer’s thickness. These controlled parameters can be collected from previous studies or separate 
measurements, which may not be 100% correct. Also, as the fitting might converge to local minima, 
the fitting itself might generate some uncertainty. The fitting could be challenging for parameters with 
high correlation or low sensitivity.

Uncertainty in estimating a parameter from FDTR data can be calculated through an analytical 
method. For FDTR measurement with least square fitting, the variance-covariance matrix of unknown 
parameters βU is given by [12] 

Var βU
� �

¼ J
0

UJU

� �� 1
J
0

U Var Φ½ � þ JCVar βC
� �

J
0

C

� �
JU J

0

UJU

� �� 1
(1) 

Table 1. Statistics of prediction error for bulk material.

DL-FDTR Mean of  
absolute max error by local minimaParameter Mean of absolute error Mean of error Std of error

k 2.34% 0.11% 4.96% 19.14%
C 3.23% −0.13% 5.61% 12.15%
G 3.81% 2.35% 6.82% 25.57%

Table 2. Statistics of prediction error for thin film material.

Parameter Mean of absolute error Mean of error Std of error

k 11.73% 6.91% 13.84%
C 3.77% 0.35% 5.54%

G1 6.82% 4.86% 9.04%
G2 9.35% 5.69% 19.62%
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where J is the Jacobian matrix, U represents the unknown parameters, C represents the controlled 
parameters, Φ is the measured phase lag. The diagonal part of the variance-covariance matrix Var βU

� �

is the uncertainty of the unknown parameters caused by the measurement uncertainty Var Φ½ � and the 
uncertainty of the controlled parameters Var βC

� �
. The non-diagonal part of Var βU

� �
is the covariance 

between parameters, which could be used to check the linear dependence and its effect on the 
confidence intervals.

Equation (1) provides a good estimation of uncertainty if the global optimum of βU is already 
found. The uncertainty calculation could be very poor if the used solution is not close to the global 
minimum. For an unknown material, and without knowing the correct value, one can get better 
fitting results by using multiple starting points and picking the result with the least residual. 
However, it is difficult to verify if a solution is the global minimum, as the unknown parameters 
are in n-dimension continuous space, where n is the number of parameters to be fitted. If the 
parameters used for the analytical uncertainty calculation is not close to the true properties, the 
Jacobian matrix calculation and the resulting uncertainty can be affected. In addition, the analytical 
method assumes the gradient is constant for variant parameters in certain windows. The error 
caused by this assumption might be negligible if the uncertainty of the controlled parameters is low, 
but may be high if the uncertainty of the controlled parameters is high or if the sensitivity to the 
controlled parameters is high.

Unlike analytical methods that only consider one possible value set of parameters, Monte Carlo 
simulation considers a large enough number of value sets to get the unknown parameter distribution. 
Monte Carlo simulation for FDTR usually assumes normal distributions for the controlled parameters 
and phase measurement. In each iteration, controlled parameters and phase data are randomly 
sampled from the corresponding distributions, then fitted with a theoretical model to generate 
a value set for the unknown parameters. After enough iterations, the mean value and associated 
uncertainty for the unknown parameters can be extracted from the distribution of possible values. As 

Table 3. Statistics of prediction error for thin film material with known C.

Parameter Mean of absolute error Mean of error Std of error

k 7.14% 2.48% 10.41%
G1 7.07% 2.18% 14.76%
G2 9.87% 6.39% 17.9%

Figure 4. Prediction error distribution for a thin film with C ¼ 1:64MJm� 3K� 1 (a) k, (b) G1, (c) G2. The x-axis presents the fraction of 
error (ΔR=RÞ:
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each Monte Carlo iteration includes fitting, a good initial guess is necessary in order to avoid high 
fitting uncertainty.

DL-FDTR can increase the accuracy in evaluating mean value and uncertainty from Monte Carlo 
simulations. Here, the role of DL-FDTR is to provide a good initial guess for the given parameters and 
phase dataset. Here we compare the results from three different Monte Carlo approaches, TR, LM and 
DL-LM. TR uses a trust-region reflective fitting algorithm with advanced fitting options provided by 
the Matlab lsqnonlin module. TR is reliable according to our test and serves as a baseline, although it 
still has chances of converging to local minima. LM uses the Levenberg Marquardt fitting algorithm 
through Matlab lsqnonlin and uses default options. DL-LM uses the same fitting algorithm as LM and 
takes the DL-FDTR prediction as an initial guess. A fair initial guess is required for TR and LM to 
make the comparison meaningful. The initial guess of TR is based on the actual properties which are 
used to generate the raw phase data without additional noise, and is offset randomly, assuming the 
offset follows a normal distribution whose standard deviation equals 20%. The initial guess of LM is 
based on the fitting results from TR and is offset in the same way as to pick initial guess for TR.

Verification of the Monte Carlo simulation was done by performing simulations for a SiO2 sample 
similar to Ref [12]. The controlled parameters are the same as Ref [12]. The pump and probe radius are 
2.8 ± 0.03 μm and 2.3 ± 0.02 μm, respectively. The Au thickness is 81 ± 1.5 nm, TBC is 51 MW/ 
m2K. 1000 phase lag datasets are created by adding random noise to the ideal data. The fitting uses the 
TR algorithm and takes a slightly offset mean value as an initial guess. At the phase noise level of 0.1 
degree, uncertainty in estimating thermal conductivity, heat capacity, and thermal boundary con-
ductance are 8.66%, 3.24%, and 16.97%, respectively, compared with 8.6%, 3.4%, and 14.6% from 
Monte Carlo results in Ref [12]. The small difference may be caused by different approaches to 
consider the phase noise level. Here we add random phase noise to the calculated phase data according 
to the noise level, and the generated phase data may not be exactly the same as in Ref [12]. The 
uncertainty values are in good agreement with analytical values in this scenario.

Monte Carlo simulations are tested for 3 different materials – SiO2, Si, and sapphire – with different 
values of TBC. Sample properties listed in Table 4 are used to generate ideal data, and then phase noise 
is manually added. The materials cover both low and high thermal conductivities. 100 nm gold is used 
as the transducer. The modulation frequency series includes 50 points in the logarithm space of 
0.1–10 MHz. The other parameters are the same as in the last Section. To prove the effectiveness of 
applying DL-FDTR to data analysis, we consider the uncertainty of the phase measurement and 
transducer thickness. The standard deviation of gold thickness is assumed to be 1.5 nm. Unless 
specified, the standard deviation in phase noise is 0.1 degree. The DL-FDTR model is separately 
trained for different Au thicknesses ranging from 96 to 104 nm. The prediction error of the deep 
learning model is listed in Table 5. The mean absolute error of the deep learning model is below 2.6%, 
4.3% and 4.3% for k, C, and G, respectively. In the Monte Carlo simulations, the Au thickness sampled 
from the normal distribution is rounded to the closest thickness value in Table 5.

The uncertainty in k, C, and G for the cases 1–9 listed in Table 4 are shown in Figure 5(a). Analytical 
calculations based on Eq. (1) are also listed for comparison. The effect of phase noise level is 
considered for the same material as in case 6, and the results are shown in Figure 5(b). The analytical 
calculations could provide good uncertainty estimation for the least square error fitting, given that we 
know the mean true value of fitting parameters. The uncertainties calculated from Monte Carlo 
simulations using TR are consistent with the analytical calculations for all the test cases. The 
uncertainties from LM are greater than analytical values for the majority of tests, while the 

Table 4. Sample properties for Monte Carlo simulations.

Parameter k Wm� 1K� 1
� �

C MJm� 3K� 1
� �

G MWm� 2K� 1
� �

SiO2 1.4 1.63 25, 50, 75 for case 1, 2, 3
Si 140 1.65 25, 50, 75 for case 4, 5, 6

Sapphire 33 3.00 25, 50, 75 for case 7, 8, 9
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uncertainties from DL-LM are similar to analytical values for most of the tests. As there is no absolute 
way to tell whether a fitting result is a local minimum or a global minimum, the fitting residual 
magnitude is used to indicate the fitting quality. Upon checking the local minima of the ideal phase 
data without phase noise, the residual of local minima with longer distance from the true value is 
usually larger than the residual of local minima with shorter distance from the true value. TR results in 
the smallest average fitting residual among the three fitting approaches. DL-LM has lower residual 
than LM for most of the test cases. Based on the analytical uncertainty calculation and fitting residual, 
LM tends to converge into fitting results far from the true value, therefore overestimating the 
uncertainties. Figure 6 shows the Monte Carlo simulation results for case 6 with phase noise of 0.4 
degree. The distributions from TR and DL-LM are very similar and are close to the normal distribu-
tion. The distribution from LM shows obvious local minima for C and G, causing their uncertainty to 
be overestimated. By taking DL-FDTR prediction as the initial guess, DL-LM eases the issue of 
overestimating uncertainty caused by convergence to local minima, which is observed in the standa-
lone LM approach. Note that the standalone LM takes slightly offset TR fitting results as the initial 
guess, which is fair to guess as the initial points. DL-FDTR might predict better than TR offset, which 
used a normal distribution with std = 20% and provide a better initial guess for nonlinear least square 
fitting.

Demonstration of DL-FDTR to real measurement

DL-FDTR is further applied and validated on real measurements. The experiment uses a Si sample 
coated by 101 ± 1.5 nm Au as transducer and 1 nm Ti as adhesive layer. The uncertainty in Au 
thickness is obtained from AFM measurements. The phase signals are detected by a lock-in amplifier 
with 3.4 Hz bandwidth with modulation frequency in the range of 100 kHz – 4 MHz. Figure 7 shows 

Table 5. Prediction error of DL-FDTR model for different Au thickness.

Au thickness 
(nm)

Mean abs error for 
k (%)

Std of error for 
k (%)

Mean abs error for 
C (%)

Std of error for 
C (%)

Mean abs error for 
G (%)

Std of error for 
G (%)

96 2.54 4.95 3.83 6.45 4.20 6.35
97 2.48 4.97 3.69 6.26 3.58 6.09
98 2.44 5.44 3.64 6.14 3.56 5.95
99 2.29 5.14 3.37 5.81 3.73 6.38

100 2.34 4.96 3.23 5.61 3.81 6.82
101 2.41 5.04 4.23 7.13 3.09 5.68
102 2.53 5.28 3.64 6.07 2.86 6.05
103 2.42 5.11 3.56 6.28 3.30 6.87
104 2.27 4.97 4.22 6.84 3.29 6.62

Figure 5. Uncertainty in k, C and G from Monte Carlo simulations (TR, LM, DL-LM) and analytical calculations. (a) Compare the 
uncertainties for different samples; (b) Compare the uncertainties for 4 different phase noise levels. The sample is the same as case 6.
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the averaged phase signal and best fitting with 160 kHz – 4 MHz frequency. Sensitivity at 100 kHz – 
160 kHz is low, and the data at that window is hard to fit. The following discussion is based on the data 
in the frequency range of 160 kHz – 4 MHz. Phase noise is extracted from the standard deviation of 
1000 measurements at each modulation frequency, and the RMS of phase noise is 0.14 degree. Monte 
Carlo simulations similar to those presented in the previous Section are performed and compared with 
the analytical calculations. Although uncertainty in Au thermal properties and beam spot size also 
introduce certain amount of uncertainty to the final results, these are not considered in this demon-
stration, because considering those may require including additional deep learning models. Future 
studies may include designing a general deep learning model that also considers controlled parameters 
of the thermal model as inputs, so that only one deep learning model is needed for various thermal 
parameters of the model.

Figure 8 shows the distribution of fitted parameters using a different fitting approach. Table 6 lists 
details of mean values and uncertainties according to Monte Carlo simulations and analytical 
calculations. TR and DL-LM have similar distributions for all three parameters, which are close to 
the normal distributions. LM has a different mean value and higher uncertainty than TR and DL-LM. 
The distribution from LM is likely to be a mixture of two normal distributions. The major distribu-
tions on the right side of Figure 8(d-f) are at values similar to TR and DL-LM, while the secondary 
distributions are at lower parameter values. Examples of fitting to the two bumps are shown in Figure 
S1 (see supplemental information). Table 6 lists the mean squared norm of residual (ResNorm) from 
each fitting method. TR has the lowest ResNorm, meaning the overall fitting quality is the best among 
these three fitting methods. The ResNorm of DL-LM is slightly higher than TR, but the difference is 
negligible. The ResNorm of LM is more than twice of that of TR, which is caused by local minima with 
values located at the secondary distribution in Figure 8(d-f).

Figure 6. Histogram of fitting results from TR, LM, DL-LM. The red curve shows the fitting with normal distribution.
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The analytical uncertainty listed in Table 6 is calculated using the mean value from TR, assuming 
TR converged to the value equal or close to the global minima. The assumption is valid for the studied 
case as the TR with different options used in this research usually converges to a same narrow range for 
this specific case, even with a very bad initial guess, according to the additional tests. Note that TR does 
not guarantee finding the global minimum. Although TR works well for this case, it may not work well 
for the other cases. The uncertainty from TR and DL-LM is close to the analytical results, while 
uncertainty from LM is overestimated. DL predicts reasonably well for k and C, but is slightly off for G. 
The ResNorm of DL is calculated by plugging the predicted parameters into the theoretical model and 
comparing the difference between the simulated phase data and the experimental data. Although the 
ResNorm of DL is even higher than that of LM, using DL-FDTR prediction as initial guess can 
efficiently help avoid local minima when using LM algorithm.

Discussion

By using DL-FDTR prediction as the initial guess for traditional fitting algorithms like Levenberg 
Marquardt and trust-region reflective, one can save effort in finding the best fitting options for each 
sample, and there will be no need to try various initial guesses in a large range. If the initial guess can 
be determined to be in a narrow range, the issues from fitting itself will not be as crucial as the issues 
arising from the properties which are totally unknown, and in this case traditional data fitting could be 
good enough. The issue of local minima can be avoided if there are fewer unknown parameters, as 
more unknowns results in more non-linearity. Note that the DL-FDTR predicts well when the phase 
data is unique to the certain properties, but may not distinguish one fitting result to another if the 
theoretical phase has subtle differences.

The computational time taken by DL-FDTR compared with the traditional fitting algorithms is 
negligible. Considering an example of Monte Carlo simulations for case 6 with phase noise of 0.4 
degree, DL-FDTR took 1.97 ms, TR took 145.29 ms, DL-LM took 204.63 ms (including DL 

Figure 7. Phase signal and best fitting for Au/Si data. Phase data for modulation frequencies in the range of 160 kHz – 4 MHz is used 
for the fitting.
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prediction), and LM took 550.92 ms for fitting/prediction per dataset. The benchmark was run on 
a desktop with i7-4790 CPU and 16GB memory. With better initial guess from DL-FDTR, traditional 
fitting algorithms will take less iterations to converge as can be observed while using DL-LM.

Conclusion

Data analysis of this FDTR experiment may have additional uncertainty caused by local minima when 
fitting the experimental data to the theoretical model. This kind of uncertainty could be over 10% for 
thermal conductivity and volumetric heat capacity of bulk samples and thermal boundary conduc-
tance between metal transducer and bulk sample. The quality of traditional fitting algorithms depends 
on the initial guess. Uncertainty from Monte Carlo simulation may be overestimated if the fitting 
algorithm is not carefully tuned and if the initial guess is far from global minima. In this study, we 
proposed a novel data analysis approach, which combines deep learning and traditional fitting 
algorithms. The developed deep learning model can predict thermal conductivity, volumetric heat 
capacity, and thermal boundary conductance with an average error below 5% for bulk samples coated 

Figure 8. Histogram of the fitting results from TR, LM, DL-LM for Au/Si sample. The red curve shows the fitting with normal 
distribution.

Table 6. Fitting results of Au/Si from Monte Carlo simulations. Uncertainty value is listed in bracket. ResNorm is the 
squared norm of the residual.

Method k Wm� 1K� 1
� �

C MJm� 3K� 1
� �

G MWm� 2K� 1
� �

ResNorm

TR 109.16 (3.66%) 1.652 (1.96%) 62.83 (6.89%) 3.1719
LM 105.32 (6.96%) 1.546 (12.60%) 59.77 (10.85%) 8.0128

DL-LM 109.29 (3.76%) 1.653 (2.01%) 62.98 (7.08%) 3.1730
DL 111.94 (5.84%) 1.664 (3.18%) 69.40 (10.07%) 13.0071

Analytical (3.79%) (2.06%) (7.07%)
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with Au. This DL-FDTR model can also accurately predict thermal conductivity of thin film and two 
interfacial conductance for thin film samples, when volumetric heat capacity of thin film is given. 
Using DL-FDTR prediction as the initial guess for the traditional fitting algorithms, the problem of 
converging to local minima can be eased, and Monte Carlo simulations can result in more accurate 
uncertainty values. The proposed application of deep learning could be applicable to other data 
analysis tasks, which involve data fitting.
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