Intermediate Heat Transfer ME 6300

Satish Kumar, Associate Professor <u>satish.kumar@me.gatech.edu</u>

Module 1 Introduction, Heat Conduction Equation (Quick Summary Review of Undergraduate Material) Lecture notes based on:

- 1. G. Nellis and S. A. Klein (2009), Heat Transfer, Cambridge University Press Lecture notes provided by Drs. Nellis and Klein
- 2. Other textbooks such as T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, "Fundamentals of Heat and Mass Transfer", 8th Edition

Modes of Heat Transfer

Heat transfer occurs whenever there is a temperature difference

Modes:

- <u>Conduction</u>: Stationary medium ΔT (interaction of microscale carriers within material)
- <u>Convection</u>: Heat transfer between a surface and a moving fluid (conduction with fluid motion, energy also transferred due to bulk fluid motion)
- <u>Radiation</u>: Heat transfer between two surfaces at different T even in absence of intervening medium, due to electromagnetic waves

Conduction

Energy transfer due to interactions of micro-scale energy carriers within material

- High energy (fast moving, high temperature) carriers collide with lower energy (slower moving, lower temperature) carriers
- Leads to transfer of energy from high T to low T

Type of energy carriers depends on material

- In gas or liquid, energy carriers are molecules
- In solid, energy carriers are phonons (lattice vibrations) or electrons

Regardless of the type of energy carriers, conduction heat transfer is characterized by *Fourier's law*

Fourier's Law

Rate Equation

Fourier's Law

$$\dot{q}'' = -k\frac{\partial T}{\partial x}$$

where : \dot{q}'' is the heat flux in the *x* - direction (W/m²) *k* is the thermal conductivity (W/m-K) $\frac{\partial T}{\partial x}$ is the temperature gradient in the *x* - direction (K/m)

- because heat flows in direction of \sqrt{T}

Meaning of Thermal Conductivity

Temperature

 n_{ms} the number density of the energy carriers (#/m²)

- v_{ms} velocity of the energy carriers (m/s)
- L_{ms} the average distance between energy carrier interactions (m)
- c_{ms} the ratio of the energy of the carrier to its temperature (J/K)

energy transfer per area from left-to-right: $q''_{x+} \approx \underbrace{n_{ms} v_{ms}}_{\frac{ms}{2} \text{ cms}} \underbrace{c_{ms} T_{x-L_{ms}}}_{\frac{\# \text{ carriers}}{\text{ area-time}}}$ energy transfer per area from right-to-left: $q''_{x-} \approx \underbrace{n_{ms} v_{ms}}_{\frac{ms}{2} \text{ cms}} \underbrace{c_{ms} T_{x+L_{ms}}}_{\frac{ms}{2} \text{ cms}}$

 $\frac{\# \text{ carriers}}{\text{ area-time}} \quad \frac{\text{energy}}{\text{ carrier}}$

Meaning of Thermal Conductivity

net energy transfer in the *x*-direction: $\vec{q'} \approx \vec{q''_{x+}} - \vec{q''_{x-}}$

$$\dot{q''} \approx n_{ms} v_{ms} c_{ms} \left(T_{x-L_{ms}} - T_{x+L_{ms}} \right)$$

$$\dot{q''} \approx -\underbrace{n_{ms} v_{ms} c_{m} }_{\text{thermal conductivity}} \underbrace{\left(T_{x+L_{ms}} - T_{x-L_{ms}} \right)}_{\approx \frac{\partial T}{\partial x} = \lim_{n \to \infty} \underbrace{\frac{\partial T}{\partial x}}_{2dx}} = -k \frac{\partial T}{\partial x}$$

• Provided that the Knudsen number

$$Kn = \frac{L_{ms}}{L_{char}}$$

- is small, Fourier's law holds and the thermal conductivity represents the product of the:
- number density (nms),
- average velocity (vms),
- heat capacity (cms), and
- distance between interactions (Lms).
- for the energy carriers in the material

$$k \propto n_{ms} v_{ms} c_{ms} L_{ms}$$

Thermal Conductivity – Representative Values

- pure metals have the largest k
 - electrons are numerous and fast
 - conductivity is related to electrical resistivity (Wiedemann-Franz law)
- alloys have lower k
 - impurities impede the motion of electrons
- non-metals have lower k
 - energy carried by phonons
- liquids have lower k
 - energy carried by molecules
- gases have lowest k
 - molecules are diffuse
 - kinetic theory to determine the thermal conductivity of a gas

Material scientists and physicists examine the underlying structure of a material in order to predict thermal conductivity (and other properties)

1-D Conduction (Energy Balance)

Consider a 1-D system

q = internal heat generation per unit
volume

Energy conducted in left face (1) (Flux)

$$q_{x} = -kA \frac{\partial T}{\partial x} +$$

Heat Generated in element (2) (Source) = qA dx

Change in internal energy (3) (Storage)

 $ho \mathbf{c} \mathbf{A} \frac{\partial \mathbf{T}}{\partial \mathbf{t}} \mathbf{d} \mathbf{x} +$

Energy conducted out right face (4) (Flux)

$$\mathbf{q}_{\mathbf{X}+\mathbf{d}\mathbf{X}} = -\mathbf{k}\mathbf{A}\frac{\partial \mathsf{T}}{\partial \mathbf{x}}\Big|_{\mathbf{X}+\mathbf{d}\mathbf{X}} = -\mathbf{A}\left[\mathbf{k}\frac{\partial \mathsf{T}}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{x}}\left(\mathbf{k}\frac{\partial \mathsf{T}}{\partial \mathbf{x}}\right)\mathbf{d}\mathbf{x}\right]$$

Energy Balance

$$\mathbf{q}_{\mathbf{X}+\mathbf{d}\mathbf{X}} = -\mathbf{k}\mathbf{A}\frac{\partial \mathsf{T}}{\partial \mathbf{x}}\Big|_{\mathbf{X}+\mathbf{d}\mathbf{X}} = -\mathbf{A}\left[\mathbf{k}\frac{\partial \mathsf{T}}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{x}}\left(\mathbf{k}\frac{\partial \mathsf{T}}{\partial \mathbf{x}}\right)\mathbf{d}\mathbf{x}\right]$$

Heat Diffusion Equation

$\left(\mathbf{k} \frac{\partial \mathbf{T}}{\partial \mathbf{x}}\right) + \mathbf{q} = \rho \mathbf{c} \frac{\partial \mathbf{T}}{\partial \mathbf{t}}$ 1-D Heat Conduction Equation $\frac{\partial}{\partial \mathbf{x}}$ T(x, y, z) $q_z + dz$ \dot{E}_{g} \dot{E}_{st} Extend to 3-D: q_x $q_x + dx$ dx **AT AT**

$$\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{k} \frac{\partial \mathbf{I}}{\partial \mathbf{x}} \right) + \frac{\partial}{\partial \mathbf{y}} \left(\mathbf{k} \frac{\partial \mathbf{I}}{\partial \mathbf{y}} \right) + \frac{\partial}{\partial \mathbf{z}} \left(\mathbf{k} \frac{\partial \mathbf{I}}{\partial \mathbf{z}} \right) + \dot{\mathbf{q}} = \rho \mathbf{c} \frac{\partial \mathbf{I}}{\partial \mathbf{t}}$$

Cylindrical Coordinates

Cylindrical coordinates:

$$\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$

Simplification 1 (Constant k):

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$
$$\alpha = \frac{k}{\rho C} = \text{thermal diffusivity} \quad \left(\frac{m^2}{\text{sec}}\right)$$

Larger $\alpha \Rightarrow$ faster heat diffusion into material

- k high \Rightarrow faster energy transfer
- $\rho C \text{ low} \Rightarrow \text{less energy needed to change T (low thermal capacity)}$

Simplifications

Special Case 1: steady state 1-D Heat Flow (No Heat Gen)

$$\frac{d^2T}{dx^2} = 0$$

$$\frac{\partial^2 \mathbf{T}}{\partial x^2} + \frac{\partial^2 \mathbf{T}}{\partial y^2} + \frac{\partial^2 \mathbf{T}}{\partial z^2} + \frac{\mathbf{q}}{\mathbf{k}} = \frac{1}{\alpha} \frac{\partial \mathbf{T}}{\partial \mathbf{t}}$$

Special Case 2: steady state 1-D Heat Flow (No Heat Gen)

Cylindrical

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} = 0$$

∂ ² T _	<u>1∂</u> T _	1	∂ ² T _	∂ ² T _	<u>q</u> _	1	∂T
∂r ^{2 +}	r∂r⁺	r ²	∂φ ^{2 +}	∂z ² ⁺	k _	α	∂t

Special Case 3: steady state 1-D Heat Flow with Heat Gen

(Cartesian)

$$\frac{d^2T}{dx^2} + \frac{\dot{q}}{k} = 0$$

Special Case 4: 2-D steady state without Heat Gen

$$\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{y}^2} = \mathbf{0}$$

Solution to the heat diffusion equation depends on:

- Physical conditions at boundaries of the medium
- Conditions existing in the medium at some initial time (time dependent problems)

Heat Equation is 2nd order in space

 \Rightarrow 2 BC for <u>each coordinate</u> needed to describe system

1st order in time

 \Rightarrow 1 initial condition required

∂²т _	∂ ² T	∂ ² T	ģ	1 ∂ T	
∂x ² ⁺	∂y ²	∂z ²	ˈk	α∂t	

Types of BC at Surface (x=0)

- Surface maintained at constant temperature T_s
 T(0,t)= T_s
 - B.C of the first kind (Dirichlet condition)
 - e.g., when surface is in contact with boiling liquid
 - $T_s = T_{phase change}$

- 2. Constant surface heat flux
 - a. Finite heat flux

$$-\mathbf{k}\frac{\partial \mathbf{T}}{\partial \mathbf{x}}\Big|_{\mathbf{0}} = \mathbf{q_s}''$$

Neumann condition (B.C. of 2nd kind)

e.g., electric heater

b. Adiabatic (insulated) surface

$$\left. \frac{\partial \mathbf{T}}{\partial \mathbf{x}} \right|_{\mathbf{O}} = \mathbf{0}$$

3.Convection Surface Condition

$$\left. -k \frac{\partial T}{\partial x} \right|_{x=0} = h(T_{\infty} - T_{(0,t)})$$

Mixed Boundary Condition

Plane Wall

Convection Resistance

- <u>Convection</u> refers to heat transfer between surface and moving fluid
- <u>Newton's law of cooling</u> rate equation that characterizes convection

$$\dot{q}_{conv} = \underbrace{\overline{h}}_{1/R_{conv}} A_s \left(T_s - T_\infty \right)$$

- *h* NOT material or fluid property
- *h* complex function of geometry, fluid properties, and flow conditions
- Chapters 4 through 7 of text book dedicated to determining *h*

$$R_{conv} = \frac{1}{\overline{h} A_s}$$

 q_{conv} convection heat transfer rate (W)

- \overline{h} average heat transfer coefficient (W/m²-K)
- A_s surface area exposed to fluid (m²)
- T_s surface temperature (K)
- T_{∞} fluid temperature (K)

Contact Resistance

- Temperature drop across interface between materials may be appreciable
 - Thermal contact resistance R_{t,c}
 - For a unit area of the interface

$$R_{t,c}^{''} = \frac{T_A - T_B}{q_x^{''}}$$

- Primarily due to surface roughness, gaps are typically air-filled
- Depends on: materials, surface preparation, interstitial material, clamping pressure
- Often *THE* dominant resistance in the entire system, esp. for high-flux applications

Contact Resistance

Heat Transfer = q through actual contact area (conduction)

+ q through conduction and radiation across gaps

Contact resistance = Parallel combination of contact spots and gaps usually contact area is small

For solids with $k > k_{interfacial fluid}$, contact resistance reduced by:

- increasing area of contact spots through increased contact pressure
- reducing interface roughness
- introducing interfacial fluid of high k

Contact between dissimilar solids/interstitial filler materials

Typical filler material:

- soft metals
- thermal gasses

Other permanent interfaces: epoxy, soft solder, etc.

Contact Resistance

- <u>Area-specific contact resistance</u> typically measured and values for specific combinations are available in tables and handbooks (Table 1-1)
 - only meant to provide estimate of importance for typical applications

Table 1-1: Area-specific contact resistance for some interfaces, from Schneider (1985) and Fried (1969)						
Materials	Clamping	Surface	Interstitial	Temperature	Area-specific	
	pressure	roughness	material		contact resistance	
copper-to-copper	—100 kPa—	— 0.2 μm —	vacuum	46°C		
copper-to-copper	1000 kPa	$0.2~\mu m$	vacuum	46°C	$1.3 \mathrm{x} 10^{-4} \mathrm{K} \mathrm{-m}^{2} \mathrm{W}$	
aluminum-to-aluminum	100 kPa	0.3 μm	vacuum	46°C	2.5x10 ⁻³ K-m ² /W	
aluminum-to-aluminum	100 kPa	1.5 μm	vacuum	46°C	$3.3 \mathrm{x} 10^{-3} \mathrm{K} \mathrm{-} \mathrm{m}^{2} \mathrm{/W}$	
stainless-to-stainless	—100 kPa—	1.3 μm	vacuum			
stainless-to-stainless	1000 kPa	1.3 μm	vacuum	30°C	2.4x10 ⁻³ K-m ² /W	
stainless-to-stainless	100 kPa	0.3 μm	vacuum	30°C	2.9x10 ⁻³ K-m ² /W	
stainless-to-stainless	1000 kPa	0.3 μm	vacuum	30°C	7.7x10 ⁻⁴ K-m ² /W	
stainless-to-aluminum	—100 kPa	1.2 μm	air	93°C		
aluminum-to-aluminum	1000 kPa	0.3 μm	air	93°C	6.7x10 ⁻⁵ K-m ² /W	
aluminum-to-aluminum	100 kPa	$10~\mu m$	air	$20^{\circ}\mathrm{C}$	2.8x10 ⁻⁴ K-m ² /W	
aluminum-to-aluminum	100 kPa	10 µm	helium	20°C	$1.1 \mathrm{x} 10^{-4} \mathrm{K} \mathrm{-m}^{2} \mathrm{W}$	
aluminum-to-aluminum	100 kPa	10 µm	hydrogen	20°C	0.72x10 ⁻⁴ K-m ² /W	
aluminum-to-aluminum	100 kPa	10 µm	silicone oil	20°C	0.53x10 ⁻⁴ K-m ² /W	

Radiation Resistance (Linearization)

• The radiation rate equation can be rearranged so that it resembles a resistance equation

$$\dot{q}_{rad} = A_s \sigma \varepsilon \left(T_s^4 - T_{sur}^4\right)$$
$$\dot{q}_{rad} = \underbrace{A_s \sigma \varepsilon \left(T_s^2 + T_{sur}^2\right) \left(T_s + T_{sur}\right)}_{1/R_{rad}} \left(T_s - T_{sur}\right)$$

• Radiation resistance (exact):

$$R_{rad} = \frac{1}{A_s \,\sigma \,\varepsilon \left(T_s^2 + T_{sur}^2\right) \left(T_s + T_{sur}\right)}$$

• Radiation resistance (approximate):

$$R_{rad} \approx \frac{1}{A_s \sigma \varepsilon 4 \overline{T}^3}$$
 where $\overline{T} = \frac{T_s + T_{sur}}{2}$

 works well if the absolute temperatures of the surface and surroundings are both large and not too different from each other

Resistance Networks

Equivalent thermal circuit:

- Heat transfer (current) same through each resistor. Temperature (voltage) drops proportional to resistances
- Total thermal resistance:

$$\frac{T_{\infty,1} - T_{\infty,2}}{R_{tot}} = q_x$$

• Series resistances can be summed:

$$\mathsf{R}_{\text{tot}} = \frac{1}{\mathsf{h}_1 \mathsf{A}} + \frac{\mathsf{L}}{\mathsf{k} \mathsf{A}} + \frac{1}{\mathsf{h}_2 \mathsf{A}}$$

Resistance Networks

Series/Parallel Configurations

• For the sake of completeness:

Radial Systems

Radial Systems

 Frequently, temperature gradients only in radial direction, so can treat as 1-D systems

 $\frac{1}{r}\frac{d}{dr}\left(kr\frac{dT}{dr}\right) = 0$

• Fourier's law:

$$q_r = -kA \frac{dT}{dr} = -k(2\pi rL) \frac{dT}{dr}$$
 $A = 2\pi rL$

- $q_r \text{ constant}, q_r'' \text{ not}, A = f(r)$
- Integration yields: $T = c_1 \ln r + c_2$
- Apply BC: $\frac{T T_{s,out}}{T_{s,in} T_{s,out}} = \frac{\ln(r/r_{out})}{\ln(r_{in}/r_{out})}$ $q_r = q''A = -k2\pi rL\frac{dT}{dr} = \frac{2\pi Lk T_{s,in} T_{s,out}}{\ln(r_{out}/r_{in})}$

Composite Cylindrical Wall

• Use definition of resistance of cylindrical element for each cylinder (combine in series):

$$q_{r} = \frac{(T_{\infty 1} - T_{\infty 4})}{\frac{1}{2\pi r t h_{1}} + \frac{\ln(r_{2}/r_{1})}{2\pi k L} + \frac{\ln(r_{3}/r_{2})}{2\pi k L} + \frac{\ln(r_{4}/r_{3})}{2\pi k L} + \frac{1}{2\pi r t h_{2}} + \frac{1}{2\pi r t L} +$$

 $T_{s,1}$ T_2 T_3 $T_{s,4}$ $T_{\infty,4}$

U and UA of Composite Cylindrical Wall

 In plane wall systems, area A is unique and constant. But in cylindrical systems, choice of several surfaces evaluated at radius r₁, r₂, or r₃. But Q does not change because of choice of radius for evaluation of surface area

$$U_1 = \frac{1}{R_{tot}A_1}$$

$$A_{1} = 2\pi r L_{1}$$

$$U_{1} = \frac{1}{\frac{1}{h_{1}} + \ln(r_{2}/r_{1})\frac{r_{1}}{k_{A}} + \frac{r_{1}}{k_{B}}\ln(r_{3}/r_{2}) + \frac{r_{1}}{k_{C}}\ln(r_{4}/r_{3}) + \frac{r_{1}}{r_{4}}\frac{1}{h_{4}}}$$

- U₁ defined from Inside Surface Area A₁
- Choice of reference surface area is arbitrary and/or based on personal preference and convenience

$$U_1A_1 = U_2A_2 = U_3A_3 = U_4A_4 = (\sum R_t)^{-1}$$

$$q_{r} = \frac{(T_{\infty 1} - T_{\infty 4})}{\frac{1}{2\pi r_{1} Lh_{1}} + \frac{\ln(r_{2}/r_{1})}{2\pi k_{A}} + \frac{\ln(r_{3}/r_{2})}{2\pi k_{B}} + \frac{\ln(r_{4}/r_{3})}{2\pi k_{C}} + \frac{1}{2\pi r_{4} Lh_{4}}}$$

Spherical System

Resistance Formulae

Table 1-2: A summary of common resistance formulae				
Situation	Resistance formula	Nomenclature		
Plane wall		L = wall thickness (to heat flow)		
	$R_{pw} = \frac{1}{k A}$	k = conductivity		
	~~~ <del>~</del> ~	$A_{c} = \text{cross-sectional area} (\perp \text{ to heat flow})$		
Cylinder	$(r_{\perp})$	L = cylinder length		
(radial heat transfer)	$\ln \left  \frac{\partial u}{\partial r} \right $	k = conductivity		
	$R_{cpl} = \frac{(r_{in})}{2\pi Lk}$	$r_{in}$ and $r_{out} =$ inner and outer radii		
Sphere	1 [ 1 1 ]	k = conductivity		
(radial heat transfer)	$R_{sph} = \frac{1}{4\pi k} \left[ \frac{1}{r_{in}} - \frac{1}{r_{out}} \right]$	$r_{in}$ and $r_{out} = inner$ and outer radii		
Convection	₂ 1	$\overline{h}$ = average heat transfer coefficient		
	$R_{conv} = \frac{1}{\bar{h} A_{s}}$	$A_s = $ surface area exposed to convection		
Contact between surfaces	, R ^r	$R_c'' = $ area specific contact resistance		
	$R_c = \frac{1}{A_s}$	$A_s = surface$ area in contact		
Radiation	1	$A_s = radiating$ surface area		
(exact)	$R_{rad} = \frac{1}{A \sigma s (T^2 + T^2) (T + T)}$	$\sigma$ = Stefan-Boltzmann constant		
	2 ¹ ₃ ¹ ² ¹ ² ¹ ² ³ ¹ ¹ ² ³ ¹ ¹ ² ¹	$\varepsilon = \text{emissivity}$		
		$T_s = absolute surface temperature$		
		$T_{sur} = absolute surroundings temperature$		
Radiation (approximate)	n 1	$A_s = radiating$ surface area		
	$\frac{R_{rad}}{A \sigma \epsilon 4 \overline{T}^3}$	$\sigma$ = Stefan-Boltzmann constant		
	-3	$\varepsilon = \text{emissivity}$		
		$\overline{T}$ = average absolute temperature		

# Intermediate Heat Transfer ME 6300

#### Module 3 Examples and Numerical Methods: 1-D Conduction with Heat Generation

- 1. G. Nellis and S. A. Klein (2009), Heat Transfer, Cambridge University Press Lecture notes provided by Drs. Nellis and Klein
- 2. Other textbooks such as T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, "Fundamentals of Heat and Mass Transfer", 8th Edition

### Spontaneous Heating of a Hay Bale

- Thermal energy generation due to bacterial fermentation
  - Volumetric generation
     depends on moisture
     content of hay when
     baled
  - Bale too large and/or
     too wet spontaneous
     combustion when T >
     70 C



# **Governing Equation**

• Energy balance:

$$\dot{q}_r + \dot{g} = \dot{q}_{r+dr}$$

$$\dot{\dot{g}}_{h} + \dot{g} = \dot{\dot{g}}_{h} + \frac{dq}{dr}dr$$
$$\dot{g} = \frac{d\dot{q}}{dr}dr$$

- Heat to be conducted out [↑] as r [↑] (generation)
- With rate equations:



• linear, 2nd-order, non-homogeneous, ODE



# Solution

• Separate and integrate:

$$\int d\left(r\frac{dT}{dr}\right) = -\int \frac{r\dot{g}''}{k}dt$$
$$r\frac{dT}{dr} = -\frac{r^2\dot{g}''}{2k} + C_1$$

• Again to get general solution:

$$\int dT = \int \left( -\frac{r \dot{g}'''}{2k} + \frac{C_1}{r} \right) dr$$
$$T = -\frac{r^2 \dot{g}'''}{4k} + C_1 \ln(r) + C_2$$

- 2 BC (r = 0, r = R)
  - r = 0: symmetry, 0 energy generation

$$\dot{q}_{r=0} = 0$$
  $\left(-2\pi r L k \frac{dT}{dr}\right)_{r=0} = 0$ 

• BC @ r = 0 yields C1 = 0  
$$T = -\frac{r^2 \dot{g}'''}{4k} + C_2$$

- As in previous example, @ r = R, T not specified, but obtain from surface energy balance and  $T_{\infty}$
- Energy into plastic cover = energy convected out by convection _____

$$\dot{q}_{out} = \frac{T_{r=R_{bole}} - T_{\infty}}{R_{cond,p} + R_{conv}}$$

$$= 0 \qquad R_{cond,p} = \frac{\ln\left(\frac{R_{bale} + th_{p}}{R_{bale}}\right)}{2\pi L k_{p}} \approx \frac{th_{p}}{2\pi R_{bale} L k_{p}} \quad R_{conv} = \frac{1}{2\pi \left(R_{bale} + th_{p}\right) L \overline{h}}$$


No unit problems were detected.

## Parametric analysis on R to obtain limit for combustion



## **Nonuniform Heat Generation**



• yields ODE that is not separable:

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = -\frac{r\left(a+bT\right)}{k}$$

• Integration of RHS presents problems due to T in argument  $\int d\left(r\frac{dT}{dr}\right) = -\int \frac{r(a+bT)}{k}dr$ 

• Can solve it in software such as Maple:

Bessel function of the first kind  

$$T = C_2 BesselJ(0, \sqrt{\frac{b}{k}}r) + C_1 BesselY(0, \sqrt{\frac{b}{k}}r) - \frac{a}{b}$$
  
Oth-order Bessel function of the first kind  
Oth-order Bessel function of the second kind  
BC same as before;  $\mathbf{r} = \mathbf{0}$ ,  $\left(\frac{dT}{dr}\right)_{r=0}$  is bounded  
 $\frac{dT}{dr} = -C_2 BesselJ(1, \sqrt{\frac{b}{k}}r) \sqrt{\frac{b}{k}} - C_1 BesselY(1, \sqrt{\frac{b}{k}}r) \sqrt{\frac{b}{k}}$ 

one of these terms must approach infinity as r approaches zero this will eliminate either  $C_1$  or  $C_2$ 

$$\lim_{r \to 0} \frac{dT}{dr} = -C_2 \operatorname{BesselJ}\left(1, \sqrt{\frac{b}{k}} 0\right) \sqrt{\frac{b}{k}} - C_1 \operatorname{BesselY}\left(1, \sqrt{\frac{b}{k}} 0\right) \sqrt{\frac{b}{k}}$$

$$= 0$$

$$C_1 \text{ must be zero}$$

$$\dot{q}_{r=R_{bole}} = \dot{q}_{out}$$

$$\left(dT\right) \qquad \left(T_{r=R_{out}} - T_{\infty}\right)$$

• At 
$$\mathbf{r} = \mathbf{R}_{\text{bale}}$$
:  $-2\pi R_{\text{bale}} Lk \left(\frac{dI}{dr}\right)_{r=R_{\text{bale}}} = \frac{\left(\frac{r_{r=R_{\text{bale}}}}{R_{\text{cond},p}} + R_{\text{conv}}\right)}{R_{\text{cond},p} + R_{\text{conv}}}$ 

• One equation in unknown, C₂

## **Comparison of Solutions**

 Note higher value of temperature-dependent solution – the bacterial fermentation heat source is larger at warmer temperatures



## **Numerical Solutions**

#### Analytical solutions

- yield functions that satisfy governing equation over computational domain
  - exact solutions
  - computationally fast
  - inflexible difficult (impossible) to include things like temperaturedependent properties

#### **Numerical solutions**

- predictions of temperature at discrete locations (nodes) within computational domain
  - approximate solutions
  - computationally slower
  - flexible easy to include things like temperature-dependent properties



## Approach

- 1. Define many (N) nodes (locations for T at Dx) and associated control volumes
- 2. Energy balance on each control volume
- 3. Approximate each energy term with rate equation (leads to approximation)
- 4. Solve using appropriate tool
- 5. Verify convergence
  - a) enough nodes?
  - b) examine dependence on N; should be invariant with N (tradeoff between accuracy and computational effort)
- 6. Check solution based on first principles, limits, overall energy balances, etc.
- 7. Compare numerical solution to corresponding analytical solution of simplified case

#### Don't be enamored of pretty pictures

## Hay Bale revisited

- Uniformly distributed nodes:  $r_i = \frac{(i-1)}{(N-1)} R_{bale}$  for i = 1..N  $\Delta r = \frac{R_{bale}}{(N-1)}$
- In some cases, concentrate nodes in regions of interest (e.g., with large dT/dr)
- Use arrays
   Track variables common to all nodes (e.g., r, T)



## Nodal Energy Balances

#### **Internal Nodes:**

- Energy balance exactly correct (energy balance must hold)
- Does not matter whether heat transfers assumed into or out of control volume (solution will indicate actual direction based on + or - values)



IN = OUT + STORED  
$$\dot{q}_{LHS} + \dot{q}_{RHS} + \dot{g} = 0$$

defined as being into the control volume





## Rate Equations

#### **Internal Nodes:**



- N-2 equations in N unknowns  $(T_1 \dots T_N)$
- Remaining two equations from boundary nodes

## Boundary Node (@ Center)

#### Node 1:



Energy balance:  $\dot{q}_{RHS} + \dot{g} = 0$ 

Rate equations:

$$\dot{q}_{RHS} = 2\pi L \left(\frac{\Delta r}{2}\right) - \frac{k}{\Delta r} \left(\frac{T_2 - T_1}{t_2}\right)$$

area of interface conduction length

temperature difference

$$\dot{g} = \pi L \left(\frac{\Delta r}{2}\right)^2 \dot{g}'''$$

$$\left(\frac{\Delta r}{2}\right) \dot{g}^{\prime\prime\prime}$$

$$\frac{2\pi Lk}{\Delta r} \left(\frac{\Delta r}{2}\right) \left(T_2 - T_1\right) + \pi L \left(\frac{\Delta r}{2}\right)^2 \dot{g}''' = 0$$

## Boundary Node (at r = R)





Energy balance: 
$$\dot{q}_{LHS} + \dot{q}_{in} + \dot{g} = 0$$

Rate equations:

$$\dot{q}_{LHS} = 2\pi L \left( r_N - \frac{\Delta r}{2} \right) \frac{k}{\Delta r} \left( T_{N-1} - T_N \right)$$
$$\dot{q}_{in} = \frac{\left( T_{\infty} - T_N \right)}{R_{cond,p} + R_{conv}}$$
$$\dot{g} = 2\pi L r_N \frac{\Delta r}{2} \dot{g}'''$$

$$\frac{2\pi Lk}{\Delta r} \left( r_N - \frac{\Delta r}{2} \right) \left( T_{N-1} - T_N \right) + \frac{\left( T_\infty - T_N \right)}{R_{cond,p} + R_{conv}} + \pi L r_N \Delta r \dot{g}''' = 0$$

## Set of Equations to be Solved

• Numerical models lead to system of algebraic equations (instead of differential equation):

$$\frac{2\pi Lk}{\Delta r} \left(\frac{\Delta r}{2}\right) (T_2 - T_1) + \pi L \left(\frac{\Delta r}{2}\right)^2 \dot{g}''' = 0$$

$$\frac{2\pi Lk}{\Delta r} \left(r_i - \frac{\Delta r}{2}\right) (T_{i-1} - T_i) + \frac{2\pi Lk}{\Delta r} \left(r_i + \frac{\Delta r}{2}\right) (T_{i+1} - T_i) + \dot{g}''' 2\pi r_i L\Delta r = 0$$
for  $i = 2..(N-1)$ 

$$\frac{2\pi Lk}{\Delta r} \left(r_N - \frac{\Delta r}{2}\right) (T_{N-1} - T_N) + \frac{(T_\infty - T_N)}{R_{cond,p} + R_{conv}} + \pi Lr_N \Delta r \dot{g}''' = 0$$

• Solve using appropriate tool, e.g., Matlab



# Intermediate Heat Transfer ME 6300

Module 4 Extended Surfaces

- 1. G. Nellis and S. A. Klein (2009), Heat Transfer, Cambridge University Press Lecture notes provided by Drs. Nellis and Klein
- 2. Other textbooks such as T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, "Fundamentals of Heat and Mass Transfer", 8th Edition

## **Extended Surface Approximation**

- Many situations where *T* distribution is 2-D/3-D but can approximate as 1-D with little loss of accuracy
- Simplification: extended surface approximation
- The most common situation - fin:
  - thin piece of metal to increase A and enhance heat transfer





## **Governing Thermal Resistances**

- This problem cannot be solved using thermal resistances ("current" is not constant in 1-D)
- However, it can be understood using thermal resistances
- Governing thermal resistances:

resistance to conduction in x-direction: 
$$R_{cond,x} = \frac{L}{kWth}$$

resistance to conduction in y-direction: 
$$R_{cond,y} = \frac{th}{4 \, kWL}$$

resistance to convection from surface:  $R_{conv} = \frac{1}{2 \overline{h} W L}$ 



## **Governing Thermal Resistances**

- Understand solution by comparing magnitudes of resistances
- $\Delta T$  proportional to resistance



### **Extended Surface Approximation**

- If  $R_{\text{cond},y}/R_{\text{conv}} << 1$ ?
- $\Delta T_{cond,y} / \Delta T_{conv} \ll 1 \Rightarrow$  extended surface approximation
- $\Delta T_{conduction}$  from center of fin to surface small relative to  $\Delta T$  from the surface to surroundings
- $T(x,y) \sim T(x)$



## **Biot Number**

 Extended surface approximation justified by Biot number

Biot number: 
$$Bi = \frac{R_{cond,y}}{R_{conv}} = \frac{th}{4kWL} \frac{2hWL}{1} = \frac{thh}{2k}$$

- If Bi << 1, extended surface approximation valid
- T~T(x)
- Thin, conductive member with small h
- Appropriate Bi not always the same, in general:

 $Bi = \frac{\text{resistance to conduction in direction to "remove"}}{\text{resistance from surface}}$  $Bi = \frac{\text{resistance to neglect in your model}}{\text{resistance to consider in your model}}$ 

## **Biot Number for Radiating Fin**



$$Bi = \frac{R_{cond,y}}{R_{rad}}$$

resistance to conduction in y-direction:  $R_{cond,y} = \frac{th}{4 \, kW \, L}$ 

resistance to radiation from the surface:  $R_{rad} \approx \frac{1}{2 \varepsilon W L \sigma \overline{T}^3}$ 

$$Bi = \frac{th}{4kWL} \frac{2\varepsilon WL\sigma \overline{T}^{3}}{1} = \frac{th\varepsilon\sigma\overline{T}^{3}}{2k}$$



## Relative "Resistances"

 If extended surface approximation valid, can anticipate solution based on relative values of R_{conv}, R_{cond,x}



## **Governing Equation**

$$\dot{q}_{x} = \dot{q}_{conv} + \dot{q}_{x+dx}$$

$$\dot{q}_{x} = \dot{q}_{conv} + \dot{q}_{x} + \frac{d\dot{q}}{dx} dx$$

$$0 = \dot{q}_{conv} + \frac{d\dot{q}}{dx} dx$$

$$0 = \underbrace{per \, dx \, \overline{h} \left(T - T_{\infty}\right)}_{\dot{q}_{conv}} + \frac{d}{dx} \left[ \underbrace{-k \, A_{c} \, \frac{dT}{dx}}_{\dot{q}} \right] dx$$

$$\left[ \frac{d^{2}T}{dx^{2}} - \underbrace{per \, \overline{h}}_{k \, A_{c}} T = - \frac{per \, \overline{h}}{k \, A_{c}} T_{\infty} \right]$$



- Rate of conduction drops due to convection
- Above development is for constant cross section
- Second-order, linear, non-homogeneous (note, if T is a solution then CT is not) ODE
- Not separable
- Split solution into homogeneous  $(T_h)$  and particular  $(T_p)$  solution:  $T = T_h + T_p$



- Particular ODE: by inspection,  $T_p = \text{constant should}$ work. Substitute into particular ODE to get  $\overline{T_p = T_{\infty}}$
- Homogeneous ODE:  $T_h = C \exp(mx)$  $C m^2 \exp(mx) - \frac{per \overline{h}}{kA_c} C \exp(mx) = 0; \quad m^2 = \frac{per \overline{h}}{kA_c}$
- Two solutions corresponding to two roots of quadratic equation T_{h,1} = C₁ exp(mx); T_{h,2} = C₂ exp(-mx)

- General solution:  $T = T_h + T_p = C_1 \exp(mx) + C_2 \exp(-mx) + T_{\infty}$
- Constants based on BC
- **Base:**  $T_{x=0} = T_b$
- Fin tip: several possibilities
- Consider adiabatic tip  $\dot{q}_{x=L} = 0; \quad \left| -k A_c \left( \frac{dT}{dx} \right) \right|$
- Substitute into general solution to get:

$$T = \underbrace{\frac{(T_b - T_{\infty})\exp(-mL)}{\exp(-mL)}}_{C_1}\exp(mx) + \underbrace{\frac{(T_b - T_{\infty})\exp(mL)}{\exp(-mL)}}_{C_2}\exp(-mx) + 7$$

$$T = (T_b - T_{\infty}) \frac{\left[\exp(-m(L-x)) + \exp(m(L-x))\right]}{\left[\exp(-mL) + \exp(mL)\right]} + T_{\infty}; \quad alternatively \quad \frac{\left(T - T_{\infty}\right)}{\left(T_b - T_{\infty}\right)} = \frac{\cosh\left[mL\left(1 - \frac{x}{L}\right)\right]}{\cosh(mL)}$$



= 0

### Interpretation



## Fin Heat Transfer



$$\dot{q}_{conv} = \int_{0}^{L} \overline{h} per(T - T_{\infty}) dx$$

$$\dot{q}_{x=0} = -k A_c \left(\frac{dT}{dx}\right)_{x=0}$$

$$\dot{q}_{fin} = \sqrt{\overline{h} per k A_c} \left( T_b - T_\infty \right) \tanh(mL)$$

#### **Other BCs:**

End Condition		Temperature distribution
Adiabatic tip		$\frac{T - T_{\omega}}{T_{b} - T_{\omega}} = \frac{\cosh(m(L - x))}{\cosh(mL)}$ $\dot{q}_{\beta m} = (T_{b} - T_{\gamma})\sqrt{h} \ per \ k \ A_{\nu} \ \tanh(mL)$ $\eta_{\beta m} = \tanh(mL)/(mL)$
Convection from tip	ā,T _∗	$\frac{T - T_{\infty}}{T_{b} - T_{\infty}} = \frac{\cosh(m(L - x)) + \frac{\overline{h}}{mk} \sinh(m(L - x))}{\cosh(mL) + \frac{\overline{h}}{mk} \sinh(mL)}$ $\dot{q}_{\delta m} = (T_{b} - T_{\infty}) \sqrt{\overline{h}} \ per \ k \ A_{c} \ \frac{\sinh(mL) + \frac{\overline{h}}{mk} \cosh(mL)}{\cosh(mL) + \frac{\overline{h}}{mk} \sinh(mL)}$
		$\eta_{jn} = \frac{\left[\tanh(mL) + mLAR_{ijn}\right]}{mL\left[1 + mLAR_{ijn}\tanh(mL)\right](1 + AR_{ijn})}$
Specified tip temperature		$\frac{T - T_{\omega}}{T_{b} - T_{\omega}} = \frac{\left[\frac{T_{L} - T_{\omega}}{T_{b} - T_{\omega}}\right] \sinh(mx) + \sinh(m(L - x))}{\sinh(mL)}$
		$q_{\beta m} = (T_{b} - T_{m}) \sqrt{h} \ per \ k \ A_{c} \ \frac{\left(\cosh\left(mL\right) - \left[\frac{T_{b} - T_{m}}{T_{b} - T_{m}}\right]\right)}{\sinh\left(mL\right)}$
Infinitely long	$\overline{h}_{a}T_{a}$ $\rightarrow$ to $\infty$ $T_{b}$	$\frac{T-T_{\omega}}{T_{\omega}-T_{\omega}} = \exp\left(-mx\right)$
		$\dot{q}_{\beta m} = (T_b - T_m) \sqrt{h} \ per \ k \ A_c$

## **Fin Efficiency**





## Fin Efficiencies and Resistances



*R*_{fin} convenient method of incorporating fin solutions into larger engineering problem

$$\eta_{fin} = \frac{\dot{q}_{fin}}{\overline{h} A_{s,fin} \left( T_b - T_{\infty} \right)} \longrightarrow \dot{q}_{fin} = \underbrace{\eta_{fin} \overline{h} A_{s,fin}}_{\frac{1}{R_{fin}}} \left( T_b - T_{\infty} \right)$$

$$\dot{q}_{fin} = \frac{\left(T_b - T_{\infty}\right)}{R_{fin}}$$
 where  $R_{fin} = \frac{1}{\eta_{fin} \,\overline{h} \,A_{s,fin}}$ 

R_{fin} incorporates effect of convection and conduction

- $R_{fin} > R_{conv} = 1/(hA_{s,fin})$  because  $\eta_{fin} < 1$
- ${\it R}_{\rm fin}$  evaluated using appropriate  $\eta_{\rm fin}$  solution
- *R*_{fin} can be inserted into resistance network

### **Finned Surfaces**


### **Extended Surface Solutions**

- Extended surface approximation can be used to analyze situations other than fins
  - volumetric generation
  - heat flux
  - multiple computational domains

#### Hot Wire Example

- Hot wire mounted in a duct to measure velocity
- Only the middle portion (the wire region) exposed to volumetric heating to avoid edge effects



#### **Extended Surface Approximation**

- Extended surface approximation allows us to assume T(x) not T(x,r)
- Approximation justified with:



### **Two Regions**

- Two computational domains:
  - $-0 < x < L_s$ : no volumetric heating ( $T_s$ )
  - $-L_{s} < x < L_{s} + L_{w}$ : volumetric heating ( $T_{w}$ )

$$\dot{g}''' A_c dx = \frac{d}{dx} \left[ -k A_c \frac{dT_w}{dx} \right] dx + \overline{h} \operatorname{per} dx \left( T_w - T_w \right)$$

$$\frac{d^2 T_w}{dx^2} - \frac{\overline{h} \operatorname{per}}{k A_c} T_w = -\frac{\overline{h} \operatorname{per}}{k A_c} T_w - \frac{\dot{g}''}{k} \qquad \text{ODE for } T_w$$

$$L_s < x < \left( L_s + L_w \right)$$

$$\frac{d^2 T_s}{dx^2} - \frac{\overline{h} \operatorname{per}}{k A_c} T_s = -\frac{\overline{h} \operatorname{per}}{k A_c} T_w \qquad \text{ODE for } T_s$$

$$0 < x < L_s$$



## **General Solutions**

• Split into particular and homogeneous DE

$$\frac{d^2 T_w}{dx^2} - \frac{\overline{h} per}{\underline{kA_c}} T_w = -\frac{\overline{h} per}{kA_c} T_\infty - \frac{\dot{g}''}{k}$$

$$\frac{d^2 T_{w,h}}{dx^2} - m^2 T_{w,h} = 0 \qquad \qquad \frac{d^2 T_{w,p}}{dx^2} - \frac{\overline{h} per}{kA_c} T_{w,p} = -\frac{\overline{h} per}{kA_c} T_\infty - \frac{\dot{g}''}{k}$$

$$T_{w,h} = C_1 \sinh(mx) + C_2 \cosh(mx) \qquad \qquad T_{w,p} = T_\infty + \frac{\dot{g}''' A_c}{\overline{h} per}$$

$$T_w = T_{w,h} + T_{w,p} = \boxed{C_1 \sinh(mx) + C_2 \cosh(mx) + T_\infty + \frac{\dot{g}''' A_c}{\overline{h} per}}$$

#### **Boundary Conditions**

$$\frac{T_{w} = C_{1} \sinh(mx) + C_{2} \cosh(mx) + T_{w} + \frac{\dot{g}'' A_{c}}{\bar{h} per} \text{ for } L_{s} < x < (L_{s})}{T_{s} = C_{3} \sinh(mx) + C_{4} \cosh(mx) + T_{w} \text{ for } 0 < x < L_{s}}$$

$$L_{s} = 2.5 \text{ cm} + x + 1. T_{s,x=0} = T_{b} + C_{s} + T_{w,x=L_{s}} = 0$$

$$L_{w} = 1.2 \text{ cm} + C_{s} + C_{s$$

 $|C_3 m \sinh(mL_s) + C_4 m \cosh(mL_s) = C_1 m \sinh(mL_s) + C_2 m \cosh(mL_s)|$ 

$$C_1 m \sinh(m(L_s + L_w)) + C_2 m \cosh(m(L_s + L_w)) = 0$$

4 Equations in 4 unknowns, can solve in EES using the appropriate values for heat generation, h, and *T*s

#### **Temperature Distribution**



#### Non Constant Cross Section Extended Surfaces

- Constant cross-section extended surfaces yield solutions in terms of exponentials and/or hyberbolic functions, which are series solutions with the appropriate constants.
- Homogeneous differential equation that results from analysis of extended surfaces with non-constant crosssection (and many other problems) is:

$$\frac{d}{dx}\left(x^{p}\frac{d\theta}{dx}\right)\pm c^{2}x^{s}\theta=0$$

(Bessel's equation)

- Series solutions to this ODE referred to as Bessel functions
- Rules for using Bessel functions are well-defined

#### **Bessel Function Solutions**



#### **Bessel Function Solutions**



Bessel functions resemble sinh and cosh (exponentials) Modified Bessel functions resemble sine and cosine

#### **Derivatives of Bessel Functions**

• Rules provided in text:

$$\frac{d}{dx} [Bessell(0,u)] = Bessell(1,u) \frac{du}{dx}$$
$$\frac{d}{dx} [BesselK(0,u)] = -BesselK(1,u) \frac{du}{dx}$$
$$\frac{d}{dx} [BesselJ(0,u)] = -BesselJ(1,u) \frac{du}{dx}$$
$$\frac{d}{dx} [BesselY(0,u)] = -BesselY(1,u) \frac{du}{dx}$$
etc.

• Maple is also very useful for working with Bessel functions

#### Annular Fin

• Washer-type fin (assume extended surface approximation is valid)



## **Governing Equation**

$$\dot{\dot{g}}_{n} = \dot{\dot{g}}_{n} + \frac{d\dot{q}}{dr}dr + \dot{q}_{conv}$$

 $\dot{q} = -k2r\pi th \frac{dT}{dr}$  $\dot{q}_{conv} = 2 \pi r dr \overline{h} (T - T_{\infty}) 2$  convection from two sides  $\frac{d}{dr}\left(-k2r\pi th\frac{dT}{dr}\right)dr + 4\pi r\,dr\,\overline{h}\left(T - T_{\infty}\right) = 0$  $\left|\frac{d}{dr}\left(r\frac{dT}{dr}\right) - \frac{2\overline{h}}{kth}rT = -\frac{2\overline{h}}{kth}rT_{\infty}\right|$ 



you cannot simply remove this from the differential!

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) - m^2 r T = -m^2 r T_{\infty} \text{ where } m = \sqrt{\frac{2\overline{h}}{kth}}$$

particular ODE:  $\frac{d}{dr}\left(r\frac{dT_{p}}{dr}\right) - m^{2}rT_{p} = -m^{2}rT_{\infty}$ **homogeneous ODE:**  $\frac{d}{dr}\left(r\frac{dT_h}{dr}\right) - m^2 r T_h = 0$ 

#### Solution

• Particular ODE is solved by inspection:

$$T_{\rho} = T_{\infty}$$

Homogeneous ODE:

$$\frac{d}{dr}\left(r\frac{dT_h}{dr}\right) - m^2 r T_h = 0$$

- This ODE is a form of Bessel's equation:  $\frac{d}{dx} \left( x^{p} \frac{d\theta}{dx} \right) \pm c^{2} x^{s} \theta = 0$
- Can solve following flow chart with:

$$x = r; \theta = T_h; p = 1; c = m; s = 1$$

### **Flow Chart**



$$x = r$$
  

$$\theta = T_h$$
  

$$p = 1$$
  

$$s - p + 2 = 1 - 1 + 2 = 2 \neq 0$$
  

$$c = m$$
  

$$s = 1$$
  
left-hand side of flow chart

#### **Homogeneous Solution**



#### **General Solution**

$$T = T_h + T_p$$

 $T = C_1 \operatorname{Bessell}(0, mr) + C_2 \operatorname{BesselK}(0, mr) + T_{\infty}$ 

 The general solution satisfies the ODE regardless of C1 and C2 - these constants are selected based on the boundary conditions:



#### **Boundary Conditions**

 $T = C_1 \text{Bessell}(0, mr) + C_2 \text{BesselK}(0, mr) + T_{\infty}$ 

• Substitute the general solution into the BCs

$$T_{r=r_{in}} = T_{b}$$

$$T_{b} = C_{1} \operatorname{Bessell}(0, mr_{in}) + C_{2} \operatorname{BesselK}(0, mr_{in}) + T_{\infty}$$

$$\left(\frac{dT}{dr}\right)_{r=r_{out}} = 0 \quad C_{1} \frac{d}{dr} \left[\operatorname{Bessell}(0, mr)\right]_{r=r_{out}} + C_{2} \frac{d}{dr} \left[\operatorname{BesselK}(0, mr)\right]_{r=r_{out}} = 0$$

$$\overline{P_{b}} = 0 \quad C_{1} \frac{d}{dr} \left[\operatorname{Bessell}(1, mr_{out}) - C_{2} \operatorname{BesselK}(1, mr_{out}) - C_{2} \operatorname{BesselK}(1,$$

 Two equations in two unknowns – solve in EES/Matlab

### **EES Solution**



## **EES Solution**





### **Fin Efficiency**

$$\eta_{fin} = \frac{\dot{q}_{fin}}{\underbrace{2\pi \left(r_{out}^2 - r_{in}^2\right)}_{A_s}\overline{h}\left(T_b - T_\infty\right)}$$

q_dot_fin= -2*pi*r_in*th*k*(C_1*m*Bessell(1,m*r_in)-C_2*m*BesselK(1,m*r_in)) "heat transfer rate to fin" eta_fin=q_dot_fin/(2*pi*(r_out^2-r_in^2)*h_bar*(T_b-T_infinity)) "fin efficiency" eta_fin_EES=eta_fin_annular_rect(th, r_in, r_out, h_bar, k) "check EES' function"

we can compare our result with the internal EES function from the fin efficiency library

$$\eta_{fin}$$
 = 0.8501 [-]  $\eta_{fin,EES}$  = 0.8501 [-]

# Intermediate Heat Transfer ME6300

#### Module 5 Separation of Variables

#### Lecture notes based on:

1. G. Nellis and S. A. Klein (2009), <u>Heat Transfer</u>, Cambridge University Press Lecture notes provided by Drs. Nellis and Klein

Other textbooks such as F. P. Incropera *et al*. (200), <u>Fundamentals of Heat and Mass</u> Transfer, 6th Ed, Wiley and Sons.

#### **Requirements for Separation of Variables**

- Split PDE into two ODEs that can solved using techniques to solve 1-D conduction problems
- Requirements for using Separation of Variables
  - PDE must be linear
    - cannot contain any products of temperature or its derivative nonlinear:  $T \frac{\partial^2 T}{\partial x^2} + \frac{\partial T}{\partial x} \frac{\partial^2 T}{\partial y^2} = 0$ linear:  $\frac{\partial^2 T}{\partial x^2} + \frac{\partial T}{\partial x} + \frac{\partial^2 T}{\partial x^2} + T = 0$
  - PDE must be homogeneous
    - **if T solution, then C T also solution (where C is a constant)** not homogeneous:  $\frac{\partial^2 T}{\partial x^2} + \frac{\partial T}{\partial x} + \frac{\partial^2 T}{\partial x^2} + T = T_{\infty}$ homogeneous:  $\frac{\partial^2 T}{\partial x^2} + \frac{\partial T}{\partial x} + \frac{\partial^2 T}{\partial x^2} + T = 0$

#### **Requirements for Separation of Variables**

- All BCs must be linear
  - cannot contain any products of temperature or its derivative

nonlinear: 
$$-k \frac{\partial T}{\partial x}\Big|_{x=W} = \sigma \varepsilon T_{x=W}^4$$
  
linear:  $-k \frac{\partial T}{\partial x}\Big|_{x=W} = h(T_{x=W} - T_{\infty})$ 

- Both BCs in one direction (the *homogeneous direction*) must be homogeneous
  - if T satisfies BCs, then C T must also satisfy BCs
  - BCs in other direction do not have to be homogeneous

not homogeneous: 
$$-k \frac{\partial T}{\partial x}\Big|_{x=W} = h(T_{x=W} - T_{\infty})$$
  
homogeneous:  $-k \frac{\partial T}{\partial x}\Big|_{x=W} = hT_{x=W}$ 

- Computational domain must be "simple"
  - boundaries must lie along lines of constant coordinates (e.g., x = W)

## Separation of Variables Steps

- 1. Ensure that problem satisfies requirements
  - 1. Typically necessary to use techniques such as transformations, superposition, etc. to achieve this
  - 2. note which direction is "homogeneous direction"
- 2. Separate the variables
  - 1. breaks PDE into two ODEs
  - 2. be sure that you get the "right" ODE in the homogeneous direction
- 3. Solve the *eigenproblem* 
  - 1. Solve ODE subject to BCs in homogeneous direction
  - 2. provides an infinite number of *eigenfunctions* and *eigenvalues*
- 4. Solve problem in non-homogeneous direction
- 5. Obtain solution for every eigenvalue
- 6. Assemble a series solution
  - 1. series solution should satisfy PDE as well as both BCs in homogeneous direction
  - 2. worth checking that this is true using software such as Maple
- 7. Enforce BCs in non-homogeneous direction
  - 1. Requires use of property of *orthogonality* of eigenfuctions at one or both BCs

### Separation of Variables Example

• Two-dimensional temperature distribution in a plate



#### **Derive PDE**

- Step 1: Differential CV
- Step 2: Energy terms
- Step 3: Energy balance

 $\dot{\boldsymbol{q}}_{x} + \dot{\boldsymbol{q}}_{y} = \dot{\boldsymbol{q}}_{x+dx} + \dot{\boldsymbol{q}}_{y+dy}$ 



• Step 4: Take limit as dx and dy approach zero

$$\dot{q}_{x} + \dot{q}_{y} = \dot{q}_{x} + \frac{\partial \dot{q}_{x}}{\partial x} dx + \dot{q}_{y} + \frac{\partial \dot{q}_{y}}{\partial y} dy$$
$$0 = \frac{\partial \dot{q}_{x}}{\partial x} dx + \frac{\partial \dot{q}_{y}}{\partial y} dy$$

• Step 5: Rate equations  $\dot{q}_x = -k \underbrace{Ldy}_{area for} \frac{\partial T}{\partial x}$   $\dot{q}_y = -k Ldx \frac{\partial T}{\partial y}$ 

$$0 = \frac{\partial}{\partial x} \left( -kLdy \frac{\partial T}{\partial x} \right) dx + \frac{\partial}{\partial y} \left( -kLdx \frac{\partial T}{\partial y} \right) dy$$

# Mathematical Specification of Problem

- Requirements for SOV:
  - PDE is linear
  - PDE is HG
  - BCs are linear
  - BCs in one direction are both HG
  - Computational domain is simple



$$0 = \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}$$
  

$$T_{x=0} = 0$$
  

$$T_{x=W} = 0$$
  

$$T_{y=0} = 0$$
  

$$T_{y=H} = T_u(x)$$
  

$$X \text{ is the homogeneous direction for this problem}$$

#### Separate the Variables

- Assume that the solution, T(x,y), can be expressed as the product of two functions: Tx(x) and Ty(y): T(x,y)=TX(x)TY(y)
- Substitute into PDE:

• Divide through by TY TX:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$$
  
$$\frac{\partial^2}{\partial x^2} [TX TY] + \frac{\partial^2}{\partial y^2} [TX TY] = 0$$
  
$$TY \frac{d^2 TX}{dx^2} + TX \frac{d^2 TY}{dy^2} = 0$$
  
$$\frac{TY \frac{d^2 TX}{dx^2}}{TX TY} + \frac{TX \frac{d^2 TY}{dy^2}}{TX TY} = 0$$
  
$$\frac{\left[\frac{d^2 TX}{dx^2} + \frac{d^2 TY}{dy^2} + \frac{d^2 TY}{dy^2} + \frac{d^2 TY}{dy^2} + \frac{d^2 TY}{TY} = 0\right]$$

#### Separate the Variables

#### • Equation can only be satisfied if both terms:

- 1. have the same magnitude
- 2. have opposite sign
- 3. are constant





would change as I move along a line of constant x

 $d^2TX$ 

 $dx^2$ 

ΤX

but 
$$\frac{\frac{d^2TY}{dy^2}}{TY}$$
 could not change in response...

If these terms were not constant, then

### Split into ODEs

The sign of the constant that you choose matters!



positive or negative?

• The choice of sign leads to the form of the ODE:

$$\frac{d^2 T X}{dx^2} - \lambda^2 T X = 0 \text{ and } \frac{d^2 T Y}{dy^2} + \lambda^2 T Y = 0 \qquad \longrightarrow \qquad TX \text{ is solved by sinh and cosh}$$

$$\frac{d^2 T X}{dx^2} - \lambda^2 T X = 0 \text{ and } \frac{d^2 T Y}{dy^2} + \lambda^2 T Y = 0 \qquad \longrightarrow \qquad TX \text{ is solved by sinh and cosh}$$

- $\frac{d}{dx^2} + \lambda^2 TX = 0 \text{ and } \frac{d}{dy^2} \lambda^2 TY = 0 \quad \longrightarrow \quad TX \text{ is solved by sin and cos}$
- The homogeneous direction (x, for this problem) leads to our eigenproblem - the eigenfunctions must be sin and cos (not sinh and cosh)...
# Split into ODEs

• We have successfully split our PDE into two ODES:

$$\frac{d^2TX}{dx^2} + \lambda^2 TX = 0 \text{ and } \frac{d^2TY}{dy^2} - \lambda^2 TY = 0$$

homogeneous direction - this is our *eigenproblem* 

- Solve the *eigenproblem:* 
  - recognize that the solution to this particular HG ODE is sine and cosine...

$$TX = C_1 \sin(\lambda x) + C_2 \cos(\lambda x)$$

# Eigen Problem

• Boundary conditions:

- at x = 0: 
$$T_{x=0} = 0 \rightarrow TX_{x=0} TY = 0$$

- is satisfied if TY = 0 (not a useful solution) or if:  $TX_{x=0} = 0$
- substitute general solution:

$$TX_{x=0} = C_1 \underbrace{\sin(\lambda 0)}_{=0} + C_2 \underbrace{\cos(\lambda 0)}_{=1} = 0$$
$$C_2 = 0$$
$$TX = C_1 \sin(\lambda x)$$

## **Eigenfunctions and Eigenvalues**

Boundary conditions:

- at 
$$\mathbf{x} = \mathbf{W}$$
:  $T_{x=W} = \mathbf{0} \rightarrow TX_{x=W} TY = \mathbf{0}$ 

- again, this is satisfied if TY = 0 (not a useful solution) or if: $TX_{x=W} = 0$
- substitute general solution:  $TX_{x=W} = C_1 \sin(\lambda W) = 0$
- this is satisfied if  $C_1 = 0$  (not a useful solution) or if:  $sin(\lambda W) = 0$
- this occurs if:  $\lambda_i = \frac{i \pi}{W}$  for  $i = 1...\infty$
- Infinite number of solutions to the eigenproblem:

$$TX_i = C_{1,i} \underbrace{\sin(\lambda_i x)}_{\text{eigenfunction}}$$
 where  $\underbrace{\lambda_i = \frac{i \pi}{W}}_{\text{eigenvalue}}$  for  $i = 1...\infty$ 

# Solve the Nonhomogeneous Problem

• There is an ODE for TY (i.e., the nonhomogeneous direction) associated with each eigenvalue:

$$\frac{d^2 T Y_i}{dy^2} - \lambda_i^2 T Y_i = 0$$

- recognize that this HG ODE is solved by sinh and cosh

$$TY_{i} = C_{3,i} \sinh(\lambda_{i} y) + C_{4,i} \cosh(\lambda_{i} y)$$

## **Obtain a Solution for Each Eigenvalue**

- Infinite solutions for  $TX(TX_i \text{ for } i = 1...\infty)$ .
- For each solution  $Tx_i$ , an associated solution  $Ty_i$
- Solution for T associated with each eigenvalue is:  $T_i = TX_i TY_i$

 $T_{i} = C_{1,i} \sin(\lambda_{i} x) \left[ C_{3,i} \sinh(\lambda_{i} y) + C_{4,i} \cosh(\lambda_{i} y) \right]$ 

• Product of two undetermined constants is an undetermined constant (i.e., it makes no sense to keep  $C_{1,i}$ ,  $C_{3,i}$ , and  $C_{4,i}$ ):  $\tau_i = \sin(\lambda_i x) \left[ \underbrace{c_{1,i} c_{3,i}}_{2} \sinh(\lambda_i y) + \underbrace{c_{1,i} c_{4,i}}_{2} \cosh(\lambda_i y) \right]$ 

$$T_{i} = \sin(\lambda_{i} x) [C_{3,i} \sinh(\lambda_{i} y) + C_{4,i} \cosh(\lambda_{i} y)]$$

# **Assemble the Series Solution**

- Each solution T_i satisfies PDE and HG-direction BCs
- Because PDE and BCs are linear and HG, sum of all solutions also satisfies PDE and BCs:

$$T = \sum_{i=1}^{\infty} T_i$$
$$T = \sum_{i=1}^{\infty} \sin(\lambda_i x) \Big[ C_{3,i} \sinh(\lambda_i y) + C_{4,i} \cosh(\lambda_i y) \Big]$$

# Enforce the Nonhomogeneous BCs

• At 
$$y = 0$$
  

$$T_{y=0} = \sum_{i=1}^{\infty} \sin(\lambda_i x) \left[ C_{3,i} \underbrace{\sinh(\lambda_i 0)}_{0} + C_{4,i} \underbrace{\cosh(\lambda_i 0)}_{1} \right] = 0$$

$$\sum_{i=1}^{\infty} C_{4,i} \sin(\lambda_i x) = 0$$

• This only works if 
$$C_{4,i} = 0$$
 for all *i*:

$$T = \sum_{i=1}^{\infty} C_{3,i} \sin(\lambda_i x) \sinh(\lambda_i y)$$

• Since there is only one constant left, it is not necessary to label it  $C_3$ 

$$T = \sum_{i=1}^{\infty} C_i \sin(\lambda_i x) \sinh(\lambda_i y)$$

## Enforce the Nonhomogeneous BCs

• At y = H  $T_{y=H} = T_u(x)$ 

$$\sum_{i=1}^{\infty} C_i \sin(\lambda_i x) \sinh(\lambda_i H) = T_u(x)$$

- This equation defines all constants in solution
- They are related to Fourier coefficients of nonhomogeneous BC
- At first glance, it's not clear how we can actually use this equation (which implicitly relates all of the constants) to explicitly determine each constant
- We have to use a special property of the eigenfunctions they are <u>orthogonal</u>

# **Orthogonality of Eigenfunctions**

- What does it mean for a set of functions, F₁(x) to F_N(x), to be orthogonal over a certain range (x_{start} < x < x_{end})?
  - If two different functions in the set are multiplied and integrated over the range the result will be zero

$$\int_{x_{start}}^{x_{end}} F_i(x) F_j(x) dx = \begin{cases} 0 \text{ if } i \neq j \\ \neq 0 \text{ if } i = j \end{cases}$$

- Eigenfunctions of our SOV solution are guaranteed to be orthogonal when integrated from one boundary to the other in the homogeneous direction
- For this problem:  $\int_{0}^{w} \sin(\lambda_{i} x) \sin(\lambda_{j} x) dx = \begin{cases} 0 \text{ if } i \neq j \\ \neq 0 \text{ if } i = j \end{cases}$

#### Using the Orthogonality of Eigenfunctions

$$\sum_{i=1}^{\infty} C_i \sin(\lambda_i x) \sinh(\lambda_i H) = T_u(x)$$

• Multiply both sides of equation by an eigenfunction

$$\sum_{i=1}^{\infty} C_i \sin(\lambda_i x) \sinh(\lambda_i H) \sin(\lambda_i x) = T_u(x) \sin(\lambda_i x)$$

• and integrate from x = 0 to x = W

$$\int_{0}^{w} \sum_{i=1}^{\infty} C_{i} \sin(\lambda_{i} x) \sinh(\lambda_{i} H) \sin(\lambda_{j} x) dx = \int_{0}^{w} T_{u}(x) \sin(\lambda_{j} x) dx$$
$$\sum_{i=1}^{\infty} C_{i} \sinh(\lambda_{i} H) \int_{0}^{w} \sin(\lambda_{i} x) \sin(\lambda_{j} x) dx = \int_{0}^{w} T_{u}(x) \sin(\lambda_{j} x) dx$$

due to the orthogonality of eigenfunctions, every one of these terms must be zero except the one term where i = j

#### **Determine the Constants**

$$C_{j} \sinh\left(\lambda_{j} H\right) \int_{0}^{W} \sin^{2}\left(\lambda_{j} x\right) dx = \int_{0}^{W} T_{u}(x) \sin\left(\lambda_{j} x\right) dx$$

 We have turned a series equation into an explicit equation for each of the constants:

$$C_{j} = \frac{\int_{0}^{W} T_{u}(x) \sin(\lambda_{j} x) dx}{\sinh(\lambda_{j} H) \int_{0}^{W} \sin^{2}(\lambda_{j} x) dx}$$
 these integrals can be evaluated conveniently using Maple

$$\begin{bmatrix} > \text{ int}((\text{sin}(\text{lambda_j*x}))^2, \text{x=0..W});\\ & \underline{W}\\ 2 \end{bmatrix} \longrightarrow C_j = \frac{0}{W \sinh(\lambda_j H)}$$

#### **Determine the Constants**

• Solution for constant *T* on upper surface:

$$T_{u}(X) = T_{u}$$



• So, the solution is:

$$T = \sum_{i=1}^{\infty} C_i \sin(\lambda_i x) \sinh(\lambda_i y) \text{ where } C_i = -\frac{2T_u \left[-1 + \left(-1\right)^i\right]}{i \pi \sinh(\lambda_i H)}$$

# **Implement Solution in EES**



# Solution in EES



# Number of Terms



# How Many Terms are Enough?

Error in terminating the series is bounded by magnitude of last nonzero term

N = 11, x = 0.5 m, y = 0.5 m

🔩 Arrays Tab	le						
Sort	' C _i	² λj	° T _i				
	[K]	[1/m]	[K]				
[1]	0.1102	3.142	0.2537				
[2]	0	6.283	0				
[3]	0.0000685	9.425	-0.003812				
[4]	0	12.57	0				
[5]	7.675E-08	15.71	0.0000988				
[6]	0	18.85	0				
[7]	1.023E-10	21.99	-0.000003				
[8]	0	25.13	0				
[9]	1.487E-13	28.27	1.025E-07				
[10]	0	31.42	0				
[11]	2.272E-16	34.56	-3.626E-09				
			/				

error is small,  $< 4x10^{-9}$  K

N = 11, x = 0.5 m, y = 1 m

🙀 Arrays Table 😥 💷 🗙								
Sort	' C _i	²λ _i	° T _i					
	[K]	[1/m]	[K]					
[1]	0.1102	3.142	1.273					
[2]	0	6.283	0					
[3]	0.0000685	9.425	-0.4244					
[4]	0	12.57	0					
[5]	7.675E-08	15.71	0.2546					
[6]	0	18.85	0					
[7]	1.023E-10	21.99	-0.1819					
[8]	0	25.13	0					
[9]	1.487E-13	28.27	0.1415					
[10]	0	31.42	0					
[11]	2.272E-16	34.56	-0.1157					
error is larger, < 0.12 K								

- Parametric table filled with 2-D grid of x and y
  - 400 runs for a 20x20 grid
  - repeat pattern every 20 rows in x
  - apply pattern every 20 rows in y

ble		😥 💶 🖂 y: Column 3	? ×
' <b></b> 💌	2	3 First Row 1 🔹 O Clear Values	Apply
	^	y Last Row 400  € Enter Values	
[K]	[m] 📐	[M] Enter Values	
	Q	0 First Value 0 m	
	0.05263	x: Column 2	
	0.1053	First Bow 1	WS
	0.1579	Last Row 400 🜩	Cancel
	0 2105	Enter Values	
		First Value 0 m	
		Last value 💌 1 m	
		Repeat pattern every 🔽 20 🚔 rows	
		V OK X Cancel	
	ble	ble T X [K] [m] 0 0.05263 0.1053 0.1053 0.1579 0.2105	ble I T X Y First Row 1 Clear Values [K] [m] [m] [m] 0.05263 First Row 1 Clear Values Enter Values First Value 0 m Last value ♥ 1 m V Apply pattern every ♥ 20 ♥ rows First Value ♥ 1 m V Apply pattern every ♥ 20 ♥ rows First Value ♥ 1 m V Apply pattern every ♥ 20 ♥ rows V OK X X Cancel







#### Homogeneous BCs

Three types of linear BCs - each has homogeneous equivalent:



## Homogeneous BCs

- Very few problems naturally have two homogeneous boundary conditions in one direction
- In many cases, use superposition or more advanced technique (see Section 2.3) to address this
- In some cases, very simple transformation can be used to recast the problem to provide one additional homogeneous BC
  - transform problem in terms of  $\theta$ , where  $\theta$  is  $\Delta T$  relative to one of the boundary or fluid temperatures

## Example

• Machining process applies a heat flux at the top center of a plate



• Develop a half-symmetry model of the process

# Half-Symmetry Model

 $\dot{q}''$ 

 $T_{b}$ 

W

Η

 $\overline{h}, T_{\infty}$ 

- Mathematical specification:
- $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ • PDE:
- BC:

$$= 0 \qquad -k \left(\frac{\partial T}{\partial x}\right)_{x=W} = \overline{h} \left(T_{x=W} - T_{\infty}\right)$$

$$\left(\frac{\partial T}{\partial x}\right)_{x=0} = 0 \qquad -k\left(\frac{\partial T}{\partial x}\right)_{x=W} = \overline{h}\left(T_{x=W} - T_{\infty}\right)$$
$$T_{y=0} = T_{b} \qquad k\left(\frac{\partial T}{\partial y}\right)_{y=H} = \begin{cases} \dot{q}'' & \text{for } 0 < x < c \\ 0 & \text{for } c < x < W \end{cases}$$

 Notice that neither direction has two homogeneous BCs

# Transformation

 x-direction BC at x = W can be made homogeneous by transforming problem according to:

$$\theta = T - T_{\infty}$$

Transformed problem specification

• PDE:  $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0$ 

• BC: 
$$\left(\frac{\partial \theta}{\partial x}\right)_{x=0} = 0$$
  $-k\left(\frac{\partial \theta}{\partial x}\right)_{x=W} = \overline{h} \theta_{x=W}$   
 $\theta_{y=0} = T_b - T_\infty$   $k\left(\frac{\partial \theta}{\partial y}\right)_{y=H} = \begin{cases} \dot{q}'' & \text{for } 0 < x < c \\ 0 & \text{for } c < x < W \end{cases}$ 

 Transformed problem has two homogeneous BC in xdirection

## Separate the Variables

- Assume that:  $\theta(x,y) = \theta X(x) \theta Y(y)$
- Substitute into PDE:

 $\frac{\partial Y}{\partial x^{2}} + \frac{\partial X}{\partial y^{2}} = 0$   $\frac{\frac{\partial^{2} \partial X}{\partial x^{2}}}{\frac{\partial X^{2}}{\partial x}} + \frac{\frac{\partial^{2} \partial Y}{\partial y^{2}}}{\frac{\partial Y^{2}}{\partial y}} = 0$ 

need eigenfunctions in the x-direction... this group must be equal to  $-\lambda^2$ 

therefore, this group must be equal to  $+\lambda^2$ 

• The two ODEs:

$$\frac{d^2\theta X}{dx^2} + \lambda^2 \theta X = 0 \qquad \frac{d^2\theta Y}{dy^2} - \lambda^2 \theta Y = 0$$

# Solve the Eigenproblem

• ODE in the homogeneous direction:

$$\frac{d^2\theta X}{dx^2} + \lambda^2 \theta X = 0$$

- General solution:  $\theta X = C_1 \cos(\lambda x) + C_2 \sin(\lambda x)$
- Boundary condition at *x* = 0:

$$\left(\frac{\partial\theta}{\partial x}\right)_{x=0} = 0 \longrightarrow \theta Y \left(\frac{d\theta X}{dx}\right)_{x=0} = 0 \longrightarrow \left(\frac{d\theta X}{dx}\right)_{x=0} = 0$$

$$C_1 \lambda \underbrace{\sin(\lambda 0)}_{0} + C_2 \lambda \underbrace{\cos(\lambda 0)}_{1} = 0$$

$$C_2 = 0$$

$$\theta X = C_1 \cos(\lambda x)$$

# Eigencondition

Boundary condition at x = W:

$$-k\left(\frac{d\theta}{dx}\right)_{x=W} = \overline{h}\,\theta_{x=W}$$

$$-k\,\theta Y\left(\frac{d\theta X}{dx}\right)_{x=W} = \overline{h}\,\theta Y\,\theta X_{x=W} \quad \longrightarrow \quad -k\left(\frac{d\theta X}{dx}\right)_{x=W} = \overline{h}\,\theta X_{x=W}$$

• The eigencondition for this problem:

$$kC_{1}\lambda\sin(\lambda W) = \overline{h} C_{1}\cos(\lambda W)$$
$$\tan(\lambda W) = \frac{\overline{h}}{k\lambda}$$

- This eigencondition:
  - defines an infinite number of eigenvalues, but
  - does not explicitly provide each eigenvalue

# Implementing Solution in EES

#### • Inputs:

\$UnitSystem SI, Mass, Radian, J, K, Pa \$TabStops 0.25, 3 in

W=0.1 [m] H=0.05 [m] qf=5.4e4 [W/m²] c=0.015 [m] k=2.5 [W/m-K] h_bar=250 [W/m²-K] T_infinity=convertemp(C,K,20 [C]) T_b=convertemp(C,K,200 [C])

"half-width of plate" "height of plate" "heat flux" "half-width of heat flux region" "conductivity" "average heat transfer coefficient" "ambient temperature"



## **Eigenvalue Ranges**



Note that successive eigenvalues fall in ranges defined by argument of the trigonometric function,  $\lambda W$ For this problem, the ranges are:



# **Eigenvalue Ranges from the Residual**

• The eigenvalue ranges can also be identified by examining the residual of the eigencondition:  $_{\text{residual}=\tan(\lambda W)} - \frac{\overline{h}W}{k(\lambda W)}$ 



# Using EES to Identify Eigenvalues

 Program the eigencondition for each eigenvalue:

N=11 [-] "number of terms" duplicate i=1,N tan(lambdaW[i])=h_bar*W/(k*lambdaW[i]) "eigencondition" lambda[i]=lambdaW[i]/W "eigenvalue" end

- EES identifies the same eigenvalue
   (λ₁) over and over again...
- why?

Sort	1 λj	^² lambdaW _i		
	[1/m]	[-]		
[1]	14.29	1.429		
[2]	14.29	1.429		
[3]	14.29	1.429		
[4]	14.29	1.429		
[5]	14.29	1.429		
[6]	14.29	1.429		
[7]	14.29	1.429		
[8]	14.29	1.429		
[9]	14.29	1.429		
[10]	14.29	1.429		
[11]	14.29	1.429		

# **Guess Values and Limits**

- The guess value and range of each eigenvalue are not specified
  - select Variable Information from the Options menu
  - note that each variable has a guess and an upper and lower limit associated with it
  - if these quantities are not specified, then EES usually finds the value that is closest to the guess value

de-select Show array variables to collapse arrays

🔩 Variable Information					? X
Show array variables					
Yariable	Guess 💌	Lower	Upper	Display	Units
С	0.015	-infinity	infinity	A 3 N	m
Н	0.05	-infinity	infinity	A 0 N	m
h_bar	250	-infinity	infinity	A 0 N	W/m^2-K
k	2.5	-infinity	infinity	A 3 N	W/m-K
lambda[]	14.29	-infinity	infinity	A 3 N	1/m
lambdaW[]	1.429	-infinity	infinity	A 3 N	-
N	11	-infinity	infinity	A 3 N	-
qf	54000	-infinity	infinity	A 1 N	W/m^2
T_b	473.2	-infinity	infinity	A 1 N	K
T_infinity	293.2	-infinity	infinity	A 1 N	K
W	0.1	-infinity	infinity	A 1   N	m
🗸 ок	m Apply	💾 Print		Update	X Cancel

# **Define Guess Values and Limits**

 Setup arrays that contain appropriate limits and guess values for each eigenvalue:

range of each eigenvalue:

$$\underbrace{(i-1)\pi}_{\text{lowerlimit}_{i}} < \lambda_{i} W < \underbrace{(i-1)\pi + \frac{\pi}{2}}_{\text{upperlimit}}$$

upperlimit_i

guess value for each eigenvalue: guess_i =  $\frac{(\text{lowerlimit}_i + \text{upperlimit}_i)}{2}$ 

duplicate i=1,N	
lowerlimit[i]=(i-1)*pi	"lower limit"
upperlimit[i]=(i-1)*pi+pi/2	"upper limit"
guess[i]=(lowerlimit[i]+upperlimit[i])/2	"guess"
end	

### Set Guess Values and Limits

• Set the guess values and limits in the Variable Information window using the arrays:

Variable Information           Show array variables           Show string variables							ß	? ×
Variable	Guess 💌	Lower	Upper	Display	Units	Кеу	Comment	
С	0.015	-infinity	infinity	A 3 N	m			
guess[]	0.7854	-infinity	infinity	A 3 N	-			
Н	0.05	-infinity	infinity	AON	m			
h_bar	250	-infinity	infinity	AON	W/m^2-K			
k	2.5	-infinity	infinity	A 3 N	W/m-K			
lambda[]	14.29	-infinity	infinity	A 3 N	1/m			
lambdaVV[]	guess[]	lowerlimit[]	upperlimit[]	A 3 N	-			
lowerlimit[]	0	-infinity	infinity	A 3 N	-			
N	11	-infinity	infinity	A 3 N	-			
qf	54000	-infinity	infinity	A 1 N	W/m^2			
T_b	473.2	-infinity	infinity	A 1 N	K			-
🗸 ок	m Apply	y _	🖹 Print		🖓 Update		🗶 Cance	;I

# **Identify Eigenvalues**

Sort	'λ _i	^² lambdaW _i	° guess _i	¹ owerlimit _i	。 upperlimit _i
	[1/m]	[-]	[-]	[-]	[-]
[1]	14.29	1.429	0.7854	0	1.571
[2]	43.06	4.306	3.927	3.142	4.712
[3]	72.28	7.228	7.069	6.283	7.854
[4]	102	10.2	10.21	9.425	11
[5]	132.1	13.21	13.35	12.57	14.14
[6]	162.6	16.26	16.49	15.71	17.
[7]	193.3	19.33	19.63	18.85	20.4
[8]	224.1	22.41	22.78	21.99	23.! _C
[9]	255.1	25.51	25.92	25.13	26 <u>diti</u> 0
[10]	286.1	28.61	29.06	28.27	29.1 O
[11]	317.2	31.72	32.2	31.42	32.9 de
					ē.

eigenvalues are correctly defined within each successive range


#### Solve Non-Homogeneous ODE

- The ODE in the y-direction (for each eigenvalue) is:  $\frac{d^2 \theta Y_i}{dy^2} - \lambda_i^2 \theta Y_i = 0 \quad \theta Y_i = C_{3,i} \cosh(\lambda_i y) + C_{4,i} \sinh(\lambda_i y)$
- Determine the solution for each eigenvalue:

$$\theta_{i} = \theta X_{i} \theta Y_{i} = C_{1,i} \cos(\lambda_{i} x) \left[ C_{3,i} \cosh(\lambda_{i} y) + C_{4,i} \sinh(\lambda_{i} y) \right]$$

• Consolidate the constants:

$$\theta_{i} = \theta X_{i} \theta Y_{i} = \cos(\lambda_{i} x) \left[ C_{3,i} \cosh(\lambda_{i} y) + C_{4,i} \sinh(\lambda_{i} y) \right]$$

• Assemble the series solution:

$$\theta = \sum_{i=1}^{N} \theta_i$$

$$\theta = \sum_{i=1}^{N} \cos(\lambda_{i} x) \left[ C_{3,i} \cosh(\lambda_{i} y) + C_{4,i} \sinh(\lambda_{i} y) \right]$$

#### **Enforce BC in Non-Homogeneous Direction**

• Boundary condition at y = 0:  $\theta_{y=0} = T_b - T_{\infty}$ 

$$\theta_{y=0} = \sum_{i=1}^{N} \cos(\lambda_{i} x) \left[ C_{3,i} \underbrace{\cosh(\lambda_{i} 0)}_{1} + C_{4,i} \underbrace{\sinh(\lambda_{i} 0)}_{0} \right] = T_{b} - T_{\infty}$$
$$\sum_{i=1}^{N} C_{3,i} \cos(\lambda_{i} x) = T_{b} - T_{\infty}$$

• Use the orthogonality of the eigenfunctions:

multiply by an eigenfunction

$$\sum_{i=1}^{N} C_{3,i} \cos\left(\lambda_{i} x\right) \cos\left(\lambda_{j} x\right) = \left(T_{b} - T_{\infty}\right) \cos\left(\lambda_{j} x\right)$$

– and integrate from x = 0 to x = W

$$\sum_{i=1}^{N} C_{3,i} \underbrace{\int_{0}^{W} \cos(\lambda_{i} x) \cos(\lambda_{j} x) dx}_{=0 \text{ if } i \neq i} = \int_{0}^{W} (T_{b} - T_{\infty}) \cos(\lambda_{j} x) dx$$

#### **Enforce BCs in Non-homogeneous Direction**



#### **Enforce BCs in Non-Homogeneous Direction**

• Boundary condition at y = H:  $k \left( \frac{\partial \theta}{\partial y} \right)_{y=u} = \begin{cases} \dot{q}'' & \text{for } 0 < x < c \\ 0 & \text{for } c < x < W \end{cases}$ 

$$k \sum_{i=1}^{N} \cos(\lambda_{i} x) \left[ \lambda_{i} C_{3,i} \cosh(\lambda_{i} H) + \lambda_{i} C_{4,i} \sinh(\lambda_{i} H) \right] = \begin{cases} \dot{q}'' & \text{for } 0 < x < c \\ 0 & \text{for } c < x < W \end{cases}$$

• Use the orthogonality of the eigenfunctions (again):

- multiply by an eigenfunction

$$k \sum_{i=1}^{N} \cos(\lambda_{i} x) \cos(\lambda_{j} x) \Big[ \lambda_{i} C_{3,i} \cosh(\lambda_{i} H) + \lambda_{i} C_{4,i} \sinh(\lambda_{i} H) \Big]$$
$$= \begin{cases} \dot{q}'' \cos(\lambda_{j} x) & \text{for } 0 < x < c \\ 0 \cos(\lambda_{j} x) & \text{for } c < x < W \end{cases}$$

#### **Enforce BCs in Non-Homogeneous Direction**

• Use orthogonality of eigenfunctions (continued):

- integrate from 
$$x = 0$$
 to  $x = W$ 

$$k \sum_{i=1}^{N} \left[ \lambda_{i} C_{3,i} \cosh(\lambda_{i} H) + \lambda_{i} C_{4,i} \sinh(\lambda_{i} H) \right] \int_{0}^{W} \cos(\lambda_{i} x) \cos(\lambda_{j} x) dx$$
$$= \int_{0}^{c} \dot{q}'' \cos(\lambda_{j} x) dx + \int_{c}^{W} 0 \cos(\lambda_{j} x) dx$$

• Leads to an expression for each constant C4,i:

$$k \left[ \lambda_{i} C_{3,i} \cosh(\lambda_{i} H) + \lambda_{i} C_{4,i} \sinh(\lambda_{i} H) \right] \int_{0}^{W} \cos^{2}(\lambda_{j} x) dx = \int_{0}^{C} \dot{q}'' \cos(\lambda_{j} x) dx$$

#### **Enforce BCs in Non-Homogeneous Direction**

$$k \left[ \lambda_{i} C_{3,i} \cosh(\lambda_{i} H) + \lambda_{i} C_{4,i} \sinh(\lambda_{i} H) \right] \int_{0}^{W} \cos^{2}(\lambda_{j} x) dx = \int_{0}^{c} \dot{q}'' \cos(\lambda_{j} x) dx$$

<pre>&gt; int(qf*cos(lambda[i]*x),x=0c);</pre>	
	$qf\sin(\lambda_i c)$
	$\lambda_i$

duplicate i=1,N Integral3[i]=qf/lambda[i]*sin(lambda[i]*c) "copied from Maple" k*(lambda[i]*C3[i]*cosh(lambda[i]*H)+lambda[i]*C4[i]*sinh(lambda[i]*H))*Integral1[i]=Integral3[i] end

# Implement the Solution

$$\theta = \sum_{i=1}^{N} \cos(\lambda_{i} x) \left[ C_{3,i} \cosh(\lambda_{i} y) + C_{4,i} \sinh(\lambda_{i} y) \right]$$

x_bar=0.5 [-]	"dimensionless x-position"	
y_bar=0.5 [-]	"dimensionless y-position"	
x=x_bar*W	"x-position"	
y=y_bar*H	"y-position"	
duplicate i=1,N		
theta[i]=cos(lambda[i]*x)*(C3[i]*cosh(lambda[i]*y)+C4[i]*sinh(lambda[i]*y))		
	"i'th term in the series solution"	
end		
theta=sum(theta[i],i=1,N)	"series solution"	
T=theta+T_infinity	"temperature"	
T_C=converttemp(K,C,T)	"in C"	

#### **Temperature Distribution**



# Intermediate Heat Transfer ME 6300

Module 6 Superposition

- 1. G. Nellis and S. A. Klein (2009), Heat Transfer, Cambridge University Press Lecture notes provided by Drs. Nellis and Klein
- 2. Other textbooks such as T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, "Fundamentals of Heat and Mass Transfer", 8th Edition

# Superposition

- Superposition allows you to split a problem with many non-homogeneous components (e.g., BCs or terms in the PDE) into sub-problems that each contain only a single non-homogeneous component
- For example:
  - a 1-D plane wall with a uniform rate of volumetric generation



- This problem has three non-homogeneous components:
  - the generation term in the PDE
  - the non-homogeneous BC at x = 0
  - the non-homogeneous BC at x = L

#### Superposition Applied to a 1-D Problem



- This problem can be split into three sub-problems that each contain only one of the non-homogeneous components:
  - sub-problem A considers the LHS BC
    - RHS BC and PDE are replaced with their homogeneous equivalents
  - sub-problem B considers the RHS BC
    - LHS BC and PDE are replaced with their homogeneous equivalents
  - sub-problem C considers the generation term in the PDE
    - BCs are replaced with their homogeneous equivalents
- Superposition allows the solution to be written as:

$$T = T_A + T_B + T_C$$

#### Break Problem into Sub-Problems and Solve



# Add Solutions of the Sub-Problems



## Superposition for Separation of Variables

- Real advantage of superposition apparent when applied to 2-D or 3-D problems
- Separation of variables requires homogeneous BC in one direction
  - Real problems rarely satisfy this criterion
  - Simple transformations not usually sufficient
- Superposition allows subdivision into two sub-problems
  - Sub-problem A replaces non-homogeneous BCs in x-direction with homogeneous equivalents
  - Sub-problem B replaces non-homogeneous BCs in y-direction with homogeneous equivalents
  - These sub-problems can each be solved using separation of variables
  - Solution is sum (superposition) of these solutions to the subproblems

# **Problem Specification**

- A problem with all non-homogeneous BCs
  - there is no homogeneous direction for this problem
  - it cannot be solved using separation of variables



## Sub-Problem A

Sub-problem A replaces the BCs in the x-direction with their homogeneous equivalent
 sub-problem A can be solved using separation of variables (x is the homogeneous direction)



# Sub-Problem B

- Sub-problem B replaces the BCs in the y-direction with their homogeneous equivalent
  - sub-problem B can also be solved using separation of variables (y is the homogeneous direction)



### Superposition

• The sum of the solutions to sub-problems A and B satisfies the original PDE and all of the original BCs

 $T = T_A + T_B$ 



#### Superposition

• The sum of the solutions to sub-problems A and B satisfies the original PDE and all of the original BCs

 $T - T \perp T$ 

$$y - \text{direction BCs:} - k \left( \frac{\partial T}{\partial y} \right)_{y=0} = \dot{q}'' \rightarrow \underbrace{-k \left( \frac{\partial T_B}{\partial y} \right)_{y=0}}_{=0 \text{ for sub-problem B}} \underbrace{-k \left( \frac{\partial T_A}{\partial y} \right)_{y=0}}_{BC \text{ for sub-problem A}} = \dot{q}''_{BC \text{ for sub-problem A}}$$
$$-k \left( \frac{\partial T}{\partial y} \right)_{y=H} = \overline{h} \left( T_{y=H} - T_{\infty} \right) \rightarrow -k \left( \frac{\partial T_B}{\partial y} \right)_{y=H} \underbrace{-k \left( \frac{\partial T_A}{\partial y} \right)_{y=H}}_{LHS \text{ of BC for sub-problem B}} = \underbrace{\overline{h} \left( T_{B,y=H} + \underbrace{\overline{h} \left( T_{A,y=H} - T_{\infty} \right)}_{LHS \text{ of BC for sub-problem A}} \right)_{HS \text{ of BC for sub-problem A}}$$

# Intermediate Heat Transfer ME 6300

#### Module 7 Numerical Methods: 2-D Conduction with Heat Generation

- 1. G. Nellis and S. A. Klein (2009), Heat Transfer, Cambridge University Press Lecture notes provided by Drs. Nellis and Klein
- 2. Other textbooks such as T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. DeWitt, "Fundamentals of Heat and Mass Transfer", 8th Edition

#### **Introduction to Finite Difference Method**

Several different numerical methods have been developed. Finite difference method is more intuitive and easy to apply. **III ABAQUS** 

Other methods include

- Finite element method
- Finite volume method

#### Numerical method -- continued p

Discretization: a *nodal network*, called *mesh* or *grid*. We can refine the mesh but we cannot obtain continuous solutions.



Nodal points or simply *nodes*, nodal property such as *nodal temperature* - it is the temperature of the node but it also represents the temperature around the node (average).

Basic principle: Through approximation, convert the differential equations to a set of algebraic equations that can be solved numerically.







Use N linear algebraic equations to solve N unknowns.

 $T_{m+l,n} + T_{m+n} - 2T_{m,n} \quad T_{m,n+l} + T_{m,n-l} \\ - 2T_{m,n} - 2T_{m,n} = 0$ 

R

# The Energy Balance Method F = KA = KAY I



#### **2-D Steady State with Heat Generation**



(W) Ein-Eout t Eg = 0 = 1,+92+93+94  $+ 2: A \times A \times J = 0$ Kx2y (Tm-1,-Tm,n) H  $F_{y} = \frac{kA^{2}T}{2x} \left[ \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right] + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right] + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac{kx \cdot A^{y}}{2x} \left( \frac{kx \cdot A^{y}}{2x} \right) + \frac$  $q = W/m^3 \qquad AT + [Ky Ad(T_m, n+1 - T_m, n)] +$  $K \neq t [ky Ag. [Tm, n-1]]$ Tm,n)+Eg lteat generation

Assume, Kx=Ky | Doc=Dy (Im-I,n+Tm+I,n+Tm,n+1+Tm,n-1  $-4Tm_{m}]+qaxay=6$  $\frac{1}{12} + \frac{1}{12} + \frac{1}{12}$ -132 7 2, + 2, + 2, + 2, + 2, + Eg 

 $= \begin{array}{c} F_{\chi} \Delta y \left( T_{3} - T_{1} \right) + \left( F_{\chi} \Delta y \left( T_{2} - T_{1} \right) \right) \\ \chi_{\chi} \end{array}$ +  $F_{y} \Delta_{Z}(T_{2}-T_{1}) + h_{2} \Delta_{Z}(T_{0}, -T_{1})$  $f\tilde{q}\Delta x.\Delta y = 0$ 

If 
$$\Delta x = \Delta y$$
,  
 $T_{m+1,n} + T_{m-1,n} + T_{m,n+1} + T_{m,n-1} - 4T_{m,n} + \frac{\dot{q}(\Delta x)^2}{k} = 0$ 



h2, Tas AV=411.44  $K_{x} \stackrel{\Delta y}{=} \left(T_{2} - T_{1}\right)$ 9 (Tz-9.3- + Ky Az (  $h_1, T_{\infty}$ g___₹ !  $h_1 \cdot \Delta x (T_0, -T_1)$ 9,+9,+9,+9q+Axisy/2=

 $(a_{12})(T_2)$ ,  $b_{2}$ ,  $b_{3}$ ,  $b_{4}$ ,  $(c_{12} - h_{1}b_{1})$ ,  $T_{2}$ ,  $b_{3}$ ,  $c_{12}$ ,  $b_{12}$ ,  $b_{12}$ ,  $b_{13}$ ,  $b_{12}$ ,  $b_{12}$ ,  $b_{12}$ ,  $b_{13}$ ,  $b_{12}$  $(A_{11}) (T_{1}) \rightarrow -k_{2} A_{2} - k_{2} A_{2} - k_{3} A_{2} - k_{3} A_{3} - k_{3} A_{3} - k_{3} A_{3}$  $+h_1$   $\Delta\chi$  Too  $(9_{15})$   $T_5 \rightarrow 0$ 

 $A_{11}T_1 + q_{12}T_2 + \cdots + q_{n}T_N$ 

=(N)

What do we end up with is a set of linear algebraic equations. Assume there are *N* unknown nodal temperatures.

- 1. Energy balance
- 2. Grid-Independent Study
- 3. Compare with exact solution if available
# PROBLEM

KNOWN: Volumetric heat generation in a rectangular rod of uniform surface temperature.

FIND: (a) Temperature distribution in the rod, and (b) With boundary conditions unchanged, heat generation rate causing the midpoint temperature to reach 600 K. 1x= 8y=5mm

SCHEMATIC:



ASSUMPTIONS: (1) Steady-state, two-dimensional conduction, (2) Constant properties, (3) Uniform volumetric heat generation.

mm



### 1.2 Steady-State 1-D Conduction without Generation

Situation	Resistance formula	Nomenclature
Plane wall	$R_{pw} = \frac{L}{k A_c}$	L = wall thickness (   to heat flow) k = conductivity $A_c =$ cross-sectional area ( $\perp$ to heat flow)
Cylinder (radial heat transfer)	$R_{cyl} = \frac{\ln\left(\frac{r_{out}}{r_{in}}\right)}{2\pi L k}$	L = cylinder length k = conductivity $r_{in}$ and $r_{out} =$ inner and outer radii
Sphere (radial heat transfer)	$R_{sph} = \frac{1}{4\pi k} \left[ \frac{1}{r_{in}} - \frac{1}{r_{out}} \right]$	k = conductivity $r_{in} \text{ and } r_{out} = \text{inner and outer radii}$
Convection	$R_{conv} = \frac{1}{\bar{h}A_s}$	$\overline{h}$ = average heat transfer coefficient $A_s$ = surface area exposed to convection
Contact between surfaces	$R_c = rac{R_c''}{A_s}$	$R_c'' =$ area specific contact resistance $A_s =$ surface area in contact
Radiation (exact)	$R_{rad} = \frac{1}{A_s \sigma \varepsilon  (T_s^2 + T_{sur}^2)  (T_s + T_{sur})}$	$A_s =$ radiating surface area $\sigma =$ Stefan-Boltzmann constant $\varepsilon =$ emissivity $T_s =$ absolute surface temperature $T_{sur} =$ absolute surroundings temperature
Radiation (approximate)	$R_{rad} \approx \frac{1}{A_s  \sigma  \varepsilon  4  \overline{T}^3}$	$A_s =$ radiating surface area $\sigma =$ Stefan-Boltzmann constant $\frac{\varepsilon}{T} =$ emissivity $\overline{T} =$ average absolute temperature

Table	1-2:	Α	summary	of	common	resistance	formu	ae.
101010			Summary	01	common	reorocurree	iorma	ue.

Note that useful reference information, such as Table 1-2, is included in the Heat Transfer Reference Section of EES in order to facilitate solving heat transfer problems without requiring that you locate a written reference book. To access this section, select the Reference Material from the Heat Transfer menu. This will open an online document that contains material from this book. Notice that the Heat Transfer menu also includes all of the examples that are associated with the book.

## **EXAMPLE 1.2-1: LIQUID OXYGEN DEWAR**

Figure 1 illustrates a spherical dewar containing saturated liquid oxygen that is kept at pressure  $p_{LOx} = 25$  psia; the saturation temperature of oxygen at this pressure is  $T_{LOx} = 95.6$  K.

The dewar consists of an inner and outer metal liner separated by polystyrene foam insulation. The inner metal liner has inner radius  $r_{mli,in} = 10.0$  cm and thickness  $th_m = 2.5$  mm. The outer metal liner also has thickness  $th_m = 2.5$  mm. The conductivity of both metal liners is  $k_m = 15$  W/m-K. The heat transfer coefficient between the oxygen within the dewar and the inner surface of the dewar is  $\bar{h}_{in} = 150 \text{ W/m}^2$ -K. The outer surface of the dewar is surrounded by air at  $T_{\infty} = 20^{\circ}$ C and radiates to surroundings that are also at  $T_{\infty} = 20^{\circ}$ C. The emissivity of the outer surface of the dewar is  $\epsilon = 0.7$ . The heat transfer coefficient between the outer surface of the dewar and the surrounding air is  $\bar{h}_{out} = 6 \text{ W/m}^2$ -K. The area-specific

	Tip condition	Solution		
Adiabatic tip	T _b	$\frac{T - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh\left(m\left(L - x\right)\right)}{\cosh\left(mL\right)}$ $\dot{q}_{fin} = (T_b - T_{\infty}) \sqrt{h} per k A_c \ \tanh\left(mL\right)$		
		$\eta_{fin} = \tanh\left(mL\right) / \left(mL\right)$		
Convection from tip	T _b + x	$\frac{T - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh\left(m\left(L - x\right)\right) + \frac{\overline{h}}{mk}\sinh\left(m\left(L - x\right)\right)}{\cosh\left(mL\right) + \frac{\overline{h}}{mk}\sinh\left(mL\right)}$		
		$\dot{q}_{fin} = (T_b - T_\infty) \sqrt{\bar{h} \operatorname{per} k A_c} \frac{\sinh(mL) + \frac{n}{mk} \cosh(mL)}{\cosh(mL) + \frac{\bar{h}}{mk} \sinh(mL)}$		
		$\eta_{fin} = \frac{[\tanh{(mL)} + mLAR_{tip}]}{mL[1 + mLAR_{tip}\tanh{(mL)}](1 + AR_{tip})}$		
Specified tip temperature		$\frac{T - T_{\infty}}{T_b - T_{\infty}} = \frac{\left[\frac{T_L - T_{\infty}}{T_b - T_{\infty}}\right]\sinh(mx) + \sinh(m(L - x))}{\sinh(mL)}$		
	$T_b \mapsto x$	$\dot{q}_{fin} = (T_b - T_\infty) \sqrt{\bar{h} \operatorname{per} k A_c} \frac{\left(\cosh\left(mL\right) - \left[\frac{T_L - T_\infty}{T_b - T_\infty}\right]\right)}{\sinh\left(mL\right)}$		
Infinitely long	$\overline{h}, T_{\infty}$ $\xrightarrow{\bullet} t_{0} \xrightarrow{\bullet} t_{0} \infty$	$\frac{T - T_{\infty}}{T_b - T_{\infty}} = \exp\left(-mx\right)$		
		$\dot{q}_{fin} = (T_b - T_\infty) \sqrt{\overline{h} \ per \ k A_c}$		
where: $T_b$ = base temperature $T_{\infty}$ = fluid temperature per = perimeter L = length T = temperature		$\overline{h}$ = heat transfer coefficient $A_c$ = cross-sectional area k = thermal conductivity $\dot{q}_{fin}$ = fin heat transfer rate x = position (relative to base of fin)		
$mL = \sqrt{\frac{per\overline{h}}{kA_c}} L = \text{fin constant}$		$AR_{iip} = \frac{A_c}{per L} = $ tip area ratio		

 Table 1-4:
 Solutions for constant cross-section extended surfaces with different end conditions.

is given by:

$$R_{cond,x} = \frac{L}{kA_c} \tag{1-223}$$

and the resistance to convection from the surface  $(R_{conv})$  is:

$$R_{conv} = \frac{1}{\overline{h} \, per \, L} \tag{1-224}$$



#### Table 1-5: Solutions for extended surfaces.



**Figure 1-54:** Flowchart illustrating the steps involved with identifying the correct solution to Bessel's equation.

where  $\theta$  is a function of x and p, c, and s are constants is a form of Bessel's equation that has been solved using power series. The rules for identifying the appropriate solution given the form of the equation are laid out in flowchart form in Figure 1-54.

Following the path outlined in Figure 1-54, the first step is to evaluate the quantity s - p + 2; if s - p + 2 is not equal to zero, then the intermediate solution parameters n and a should be calculated.

$$n = \frac{1 - p}{s - p + 2} \tag{1-387}$$

$$a = \frac{2}{s - p + 2} \tag{1-388}$$

$$\frac{n}{a} = \frac{1-p}{2}$$
 (1-389)

The solution depends on the sign of the last term in Eq. (1-385); if the sign of the last term is negative, then the solution is expressed as:

$$\theta = C_1 x^{n/a} \operatorname{BesselI}\left(n, c \, a \, x^{1/a}\right) + C_2 x^{n/a} \operatorname{BesselK}\left(n, c \, a \, x^{1/a}\right)$$
(1-390)



Figure 1-55: Modified Bessel functions of the first and second kinds and the zeroth and first orders.

The zeroth and first order Bessel functions of the first and second kind are shown in Figure 1-56. Notice that the Bessel functions of the second kind, like the modified Bessel functions of the second kind, are unbounded at zero.

The rules for differentiating zeroth order Bessel and zeroth order modified Bessel functions are:

$$\frac{d}{dx} [\text{BesselI}(0, u)] = \text{BesselI}(1, u) \frac{du}{dx}$$
(1-399)

$$\frac{d}{dx}\left[\text{BesselK}(0,u)\right] = -\text{BesselK}(1,u)\frac{du}{dx}$$
(1-400)



Figure 1-56: Bessel functions of the first and second kinds and the zeroth and first orders.

# **One-Dimensional, Steady-State Conduction**

$$\frac{d}{dx}[\text{BesselJ}(0,u)] = -\text{BesselJ}(1,u)\frac{du}{dx}$$
(1-401)

$$\frac{d}{dx} [\text{BesselY}(0, u)] = -\text{BesselY}(1, u) \frac{du}{dx}$$
(1-402)

For arbitrary order Bessel and modified Bessel functions with positive integer order n, the rules for differentiation are:

$$\frac{d}{dx}\text{BesselI}(n, mx) = m\text{BesselI}(n-1, mx) - \frac{n}{x}\text{BesselI}(n, mx)$$
(1-403)

$$\frac{d}{dx}\text{BesselK}(n, mx) = -m\text{BesselK}(n-1, mx) - \frac{n}{x}\text{BesselK}(n, mx)$$
(1-404)

$$\frac{d}{dx}\text{BesselJ}(n, mx) = m\text{BesselJ}(n-1, mx) - \frac{n}{x}\text{BesselJ}(n, mx)$$
(1-405)

$$\frac{d}{dx}\text{BesselY}(n, mx) = m \text{BesselY}(n-1, mx) - \frac{n}{x}\text{BesselY}(n, mx)$$
(1-406)

Finally, the following differentials are also sometimes useful:

$$\frac{d}{dx} \left[ x^n \operatorname{BesselI}(n, m x) \right] = m x^n \operatorname{BesselI}(n-1, m x)$$
(1-407)

$$\frac{d}{dx}[x^n \operatorname{BesselK}(n, mx)] = -mx^n \operatorname{BesselK}(n-1, mx)$$
(1-408)

$$\frac{d}{dx} [x^n \operatorname{BesselJ}(n, mx)] = m x^n \operatorname{BesselJ}(n-1, mx)$$
(1-409)

$$\frac{d}{dx}\left[x^{n}\operatorname{BesselY}(n,mx)\right] = -mx^{n}\operatorname{BesselY}(n-1,mx)$$
(1-410)

$$\frac{d}{dx}[x^{-n}\operatorname{BesselI}(n,mx)] = mx^{-n}\operatorname{BesselI}(n+1,mx)$$
(1-411)

$$\frac{d}{dx}[x^{-n}\operatorname{BesselK}(n,mx)] = -mx^{-n}\operatorname{BesselK}(n+1,mx)$$
(1-412)

$$\frac{d}{dx}[x^{-n}\operatorname{BesselJ}(n,mx)] = -mx^{-n}\operatorname{BesselJ}(n+1,mx)$$
(1-413)

$$\frac{d}{dx}[x^{-n}\operatorname{BesselY}(n,mx)] = -mx^{-n}\operatorname{BesselY}(n+1,mx)$$
(1-414)